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FOREWORD 

Designing VLSI systems represents a challenging task. It is a 
transfonnation among different specifications corresponding to different 
levels of design: abstraction, behavioral, stntctural and physical. The 
behavioral level describes the functionality of the design. It consists of 
two components; static and dynamic. The static component describes 
operations, whereas the dynamic component describes sequencing and 
timing. The structural level contains infonnation about components, 
control and connectivity. The physical level describes the constraints 
that should be imposed on the floor plan, the placement of components, 
and the geometry of the design. Constraints of area, speed and power are 
also applied at this level. To implement such multilevel transfonnation, 
a design methodology should be devised, taking into consideration the 
constraints, limitations and properties of each level. The mapping process 
between any of these domains is non-isomorphic. A single behavioral 
component may be transfonned into more than one structural component. 

Design methodologies are the most recent evolution in the design 
automation era, which started off with the introduction and subsequent 
usage of module generation especially for regular structures such as 
PLA's and memories. A design methodology should offer an integrated 
design system rather than a set of separate unrelated routines and tools. 
A general outline of a desired integrated design system is as follows: 

* Decide on a certain unified framework for all design levels. 

* Derive a design method based on this framework. 

* Create a design environment to implement this design method. 

An overview of an integrated design methodology is presented in 
Chapter 1; the rest of the book discusses the following emerging issues: 

System Integration: Integrating all the CAD tools at different lev
els is economically significant. Decisions made during early stages of 
high level synthesis have great effect on the final VLSI design implemen
tation. A unifonn data structure is needed for such integration among 
various levels (Chapter 1). Global optimization can be achieved with 
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such integrated systems (Chapter 8). A synthesis manager can be used 
for coordination and integration (Chapter 4). Several integrated CAD 
systems have been presented in this book; Sphinx (Chapter 1), HYPER 
(Chapter 4), MARS (Chapter 5), Hi_Pass (Chapter 6). 

Optimization: Most of the subtasks of high-level synthesis are 
NP-hard. Optimization plays an important role in implementing such 
systems. Several approaches can be followed such as Heuristic-based 
algorithms, Graph-theoretical algorithms, and Integer programming. The 
latter proved to be the most efficient when solving several sub-tasks, 
simultaneously (Chapter 2). Identifying the intensive optimization tasks 
is a key parameter to reduce the computational complexity of a design 
system. 

Algorithm Transformation: Algoritlnn transformation is the first 
phase in architecture synthesis. Optimizing these types of transforma
tions- retiming pipelining, basic block transformation, control structure 
transformation, and suboperational level transformation, will shift the 
emphasis from the traditional level synthesis tasks (such as scheduling, 
assignment, allocation and module selection) (Chapters 4, 5 & 6). 

Impact of Applications: Application requirements playa significant 
role in deciding the target architecture styles and modules. The main 
factors are the sampling speed, and the level of required numerical and 
aritlnnetic computations (Chapters 4, 6-10). The tasks performed by 
various CAD tools are highly dependent on the target architectures, their 
hardware components, and interconnections (Chapter 3). Parallelism is a 
natural architectural style for high speed sampling rates. It can be realized 
on the system level by using multiple buses and functional units (Chapter 
3), or on the aritlnnetic level by using multiple operators concurrently 
(Chapter 6), or by employing non-traditional aritlnnetic systems (Chapter 
9). 

Memory Management: DSP and image processing systems involve 
a lot of data storage and intermediate data manipulation. Such data pro
cessing in real-time presents not only computational problems, but also 
storage problems. Several solutions are discussed in different chapters 
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such as: Designing high level memory manager (Chapter 7), Automated 
assignment of variables to multiple memories (Chapter 3), and Inter
facing the developed designed system to an existing data base structure 
and management; e.g: ocr tool (Chapter 6) and CADENCE Edge tool 
(Chapter 1). 

Algorithm Prototyping: As DSP applications get more complicated 
and involve various components viz., smart sensors, prototyping became 
an economic necessity. Prototyping is also an efficient vehicle for soft
ware development. Two approaches can be followed: first, using a gen
eral machine with specific capability for software development (Chapter 
10); and, second, using hardware modules for functional representation 
of an algorithm, i.e. hardware emulation (Chapter 8). 
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PREFACE 

In recent years, Digital Signal Processing (DSP) architectures have 
gained considerable significance, because of their wide application do
mains, which range from medium throughput speech, audio and telecom
munication systems at the lower end of the spectrum, to image, video 
and radar processing at the high frequency end. Moreover, state-of-the
art systems for real-time mass communication, such as robotics, machine 
vision, and satellite systems, represent fast growing application areas. 
For such complex systems, especially for those designed for consumer 
electronics market, features such as throughput, area, power consumption 
and packaging tend to be of utmost importance. Design cycle time, from 
algorithms to system, has to be reduced, from a few years to weeks, in or
der to respond to the changing market. These objectives can be achieved 
by implementing DSP systems in an Application Specific Integrated Cir
cuits (ASICs) paradigm using a comprehensive design methodology. 

A design methodology should offer an integrated design system 
rather than a set of separate unrelated routines and tools. It is focussed 
around high level synthesis that transform a high level specification 
(behavioral or functional) into an intermediate implementation. Synthesis 
technologies have become very popular; due to mainly these reasons, 
the need to get a correctly working system the first time, the ability 
to experiment with several alternatives of the design, and the economic 
factors (such as time to market etc.). In addition, synthesis systems allow 
designers with limited knowledge, of low level implementation details, 
to analyze and trade-off between alternative implementations without 
actually implementing the target architectures. 

Design methodologies and environments for DSP architectures and 
applications are the focus of this book. The emphasis is centered 
around the emerging issues in this area, which are: system integration, 
optimization, algorithm transformation, impact of applications, memory 
management and algorithm prototyping. 
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The intent of this book is to be infonnative and to stimulate the reader 
to get a head start, gain knowledge and participate in the fast evolving 
field of Application Specific Design Methodology for DSP Architectures. 
The book can be used as a textbook for research courses in Application 
Specific Design, VLSI Design Methods, and Silicon Compilers. It can 
also be used as supplementary text for graduate and senior undergraduate 
courses in DSP architectures, design, and applications. It can also serve 
as a material for tutorials and short courses in these topics. 

The idea of this book was motivated by a pre-symposium workshop 
at IS CAS '92, San Diego. The speakers in this workshop were Catherine 
H. Gebotys, Baher Haroun, Rajeev Jain and myself. The workshop 
was sponsored by the VLSI Systems and Applications (VSA) Technical 
committee of the IEEE Circuits and Systems society. I extend my thanks 
to the speakers at the workshop for supporting the idea of this book, 
starting from its conception in San Diego. Special thanks to the authors 
who patiently spent considerable time and effort to have their research 
work reported in this book. The environment at the Center for Advanced 
Computer Studies (CACS) has been dynamic, inspiring and supportive 
for such a project. My sincere thanks and appreciation to my close friends 
N.A. Ramakrishna and Aakash Tyagi. They have been my students and 
colleagues for several years; working with them has been a very enjoyable 
experience. Having Cathy Pomier in CACS is a source of smiles in tense 
times. She is the person to go to when deadlines are overwhelming. 
My sincere thanks to Kluwer Academic Publishers for their continuing 
support, to Bob Holland, the editor and his assistant Rose Luongo for 
their patience. They have provided me with a friendly communication 
channel. 

Finally, I would like to acknowledge my lovely wife's support and 
patience. She is still looking forward to my future money-maker book. 
My interesting kids, Aiman, Walid and Amanda, are always asking me 
when I will write a #1 Best Seller, so their friends can see it in Wal-Mart 
and other bookstores in the Acadiana mall. 

Magdy A. Bayoumi. 
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Sphinx: A High Level Synthesis 

System for ASIC Design 

Ramakrishna N.A and M agdy A. Bayoumi 

The Center for Advanced Computer Studies 
University of Southwestern Louisiana 

Lafayette, LA 70504 

Introduction 

During the past twenty years, integrated circuit foundries have gained 
the ability to produce increasingly complex integrated circuits. This has 
encouraged system designers to design increasingly complex electronic 
systems - from the board level down to the chip level. Such rapid progress 
can be partially attributed to two phenomenon - first is the fabrication 
technology and second, is the development of design methodologies and 
tools for automated design and design support. Just a decade ago, in the 
early eighties, designers began to use automatic/semi automatic tools for 
layout/mask generation, schematic capture, and circuit and logic simu
lation. A limited amount of high level simulation was also being done, 
for example, several simulators were built and used for experimenting 
with high level descriptions in ISPS [1], and other academic and indus
trial proprietary languages. The tools as such were used primarily as 
support systems for certain tasks. When the tools failed, the designs 
could be done manually. However, the rapid changes in technology, the 
ability to put more devices on a chip, new applications, cost and per
fonnance targets have forced the use of comprehensive design systems. 
Using such systems, the design effort in tasks such as schematic capture, 
placement, routing, layout generation, simulation, etc., has reduced by at 
least 50%. The design automation era started off with the introduction 
and subsequent usage of module generation environments. Hardware 
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generators for regular structures such as PLAs, ROMs etc, became very 
popular. Soon after, logic synthesis systems were introduced. In logic 
synthesis, the automation was the direct translation of truth tables into 
optimized logic networks. In the recent past, the evolution of design 
automation technologies has brought about the introduction of synthesis 
systems - essentially methods and methodologies that transform a high 
level specification (behavioral or functional) into a reasonable implemen
tation. There are several reasons why synthesis technology has become 
popular. Amongst them are, the need to get a correctly working system 
the first time, the ability to experiment with several alternatives of the 
design without actually implementing the design, and economic factors 
such as time to market. In addition, synthesis systems allow designers 
with limited knowledge of low level implementation details to analyze 
and tradeoff between alternative implementations without actually imple
menting the target architectures. Ideally, synthesis techniques promise 
designs that are correct by construction. Though such claims are hard 
to prove using formal methods, it is widely accepted that synthesis sys
tems arrive at designs that are at least satisficing. Currently push-button 
technology for automatic design of hardware from high level specifica
tions is far from reality. Designers have to take part in several design 
decisions during the design process specially at the higher levels, while 
delegating low level (and well understood) tasks such as layout genera
tion, place and route etc, to robust design tools. In the last decade, there 
has been significant interest amongst CAD tool developers to design and 
implement multi-level tools and methodologies that aid in the design of 
integrated circuits. 

The ideal goal of design automation is to be able to derive mask 
level information from a given behavioral specification. Silicon compilers 
are software systems that allow us to achieve such goals. The various 
tasks in a silicon compiler environment can be roughly classified into the 
following categories. 

System level synthesis 

High level synthesis 
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At the highest level of abstraction, systems are specified in tenns 
of their instruction set, constraints that need to be met such as fabri
cation cost, power consumption etc. System level synthesis deals with 
transforming such specifications into one or more subsystem descriptions 
at the algorithmic level. The tasks include partitioning, and sub-system 
specification. System partitioning in the domain of high level synthesis 
has now become an important research area. 

High level synthesis aims at deriving high quality and correct phys
ical structure from behavioral descriptions. The fast turnaround times 
achiveable using synthesis tools encourage designers to explore different 
architectures before deciding upon the final one. The ability to explore 
for solutions within the design space sometimes results in arriving at ar
chitectures that are of an order of magnitude better than those achieved 
using traditional methods of design. In high level synthesis, the starting 
point is the behavioral description at the algorithmic level. This descrip
tion is a precise procedure for the computational solution of a problem. 
The behavior is specified in tenns of the operations and the computation 
sequences of the inputs to produce the required outputs. A high level 
programming language such as ISPS [1], Verilog [2], and VHDL [3], 
Silage [4] can be used to describe the behavior of the architecture to be 
synthesized. The various tasks associated with the high level synthesis 
include scheduling of operators to control steps, allocation of operators 
to operations in the description, assignment of operators to operations, 
allocation and assignment of memory modules to variables. There are 
several ways to schedule operators and allocate resources and this causes 
several tradeoffs in terms of time and area. By providing for more re
sources, a more parallel implementation can be achieved, however the 
price to pay is the additional hardware cost. Scheduling, resource al
location and binding, are tasks involved in finding a satisfying solution 
within the design space. 
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Register level synthesis deals with the issues involved in the synthe
sis of the data paths and controllers. The output of the scheduling and 
allocation stages is a description at the register transfer level and the next 
step is the register level synthesis. At this level, physical characteristics 
of the various operators are taken into consideration. Modifications on 
the initial allocation can also be made based on performance issues. Op

timization of memory, buses and interconnect are some of the sub tasks 
involved in data path synthesis. Controller synthesis involves a transition 
from behavior to structure. The objective of this task is to synthesize a 
controller given the schedule and the data path by the scheduler and the 
data path synthesizer. Both hardwired and microcoded controllers can 
be synthesized. 

The data path synthesis and the controller synthesis phases specify 
the various building blocks of the design under consideration. It is the 
task of the logic synthesis system to map the behavior of these building 
blocks to gate level hardware structures. Technology mapping on the 
other hand deals with the actual mapping of these gate level structures 
to standard library cells in a given technology. 

Scheduling is an important sub task in the synthesis process. Briefly, 
scheduling deals with the assigning of operations into control steps. 
Scheduling affects several aspects of the synthesized design such as the 
total number of functional units used, the total time of computation, the 
storage requirements, interconnect requirements etc. In other words, the 
area of the design and the speed of the design are directly affected by 
decisions made during the scheduling process. In manual designs, it is 
quite possible that certain decisions are made which have a rather negative 
affect on the area and time characteristics of the resulting design. In 
addition, the inclusion of issues such as pipe lining, conditional branching 
etc, complicate the matters further.The data path synthesis stage follows 
the scheduling stage. The tasks considered here are functional unit, 
storage and interconnect allocation and binding. These are complicated 
tasks and can literally lead to a combinatorial explosion of possible 
solutions. 
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The above mentioned areas are some of the issues that can be 
effectively handled by synthesis programs as opposed to manual design. 
The effectiveness of placement and routing systems has encouraged 
designers to develop techniques for automating the higher levels in the 
design abstraction. 

Ever since the power of synthesis techniques has been shown to be 
effective, there have been dozens of algorithms that have been published. 
While most of these algorithms cater to individual tasks of the synthesis 
process, not many integrated methodologies have been presented. There 
are several challenges that need to be faced when trying to get a working 
methodology - specially one wherein the constituent methods them
selves are complex systems. 

DSP and Synthesis 

Digital Signal Processing (DSP) systems are an important class 
of applications in electronic design. Application domains range from 
medium throughput speech, audio and telecommunication systems at the 
lower end of the frequency spectrum to image, video and radar processing 
at the higher frequency end. For such complex systems and specially 
for those designed for the consumer electronics market, features such 
as throughput, area, power consumption and packaging tend to be of 
utmost importance. Design cycle time from algorithm to system has to 
be reduced from a few years to weeks in order to respond to the changing 
market. These objectives can be achieved by implementing DSP systems 
in application specific integrated circuits using computer aided design 
(CAD) support. Such CAD support should include tools to assist the 
designer at all levels of the design, from the highest level of abstraction to 
the physical design level. DSP applications are characterized by intensive 
arithmetic operations in contrast to control dominated applications. In 
DSP applications, many arithmetic operations including multiplication, 
have to be executed in parallel in order to meet the throughput constraints. 
DSP system implementations can be roughly classified into two classes, 
compiled silicon and software programmable [5]. In the case of compiled 
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silicon systems, the hardware is designed to execute the DSP algorithm, 
while in the case of software programmable, either general purpose DSP 
systems are used or the given algorithm is compiled to generate code 
which can run on general purpose DSP systems [6]. In our research, we 
are concerned with compiled silicon structures. In the next section, we 
will present an overview of a methodology for the synthesis of application 
specific integrated circuits. 

System Overview 
The concept of high level synthesis and the numerous sub tasks 

associated with it were introduced and described in the previous sec
tion. In this section, we will propose a methodology for the synthesis 
of application specific integrated circuits. The methodology will be in
tegrated into a system we call Sphinx. Sphinx provides an integrated set 
of interacting tools for synthesis of synchronous ASICs. They include 
behavioral, structural and logic synthesis tools in addition to placement, 
routing, and low level integration tools. These tools are all interfaced 
with the Cadence Edge Framework. 

Figure 1 shows an overview of the system. Some of the important 
features of the system include: 

A synthesis oriented description language: Verilog is used as the 
language to specify the behavior of the algorithm that needs to be 
synthesized. This specification in then translated into an internal 
graph representation [7]. 
A scheduling subsystem that supports both pipelined and non
pipe lined scheduling. Partially bound hardware descriptions are al
lowed at the flow graph level. This enables the user to pre-bind 
certain hardware units to nodes in the flow graph. The rest of the 
nodes can be bound by automatic procedures that are built into the 
system. In this chapter, we will describe one of the pipelined sched
uling algorithms that have been used. In addition to this algorithm, 
the system also supports other algorithms for pipe lined and non
pipelined scheduling. 
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A data path synthesis subsystem to generate the data path given a 
schedule and a module database. Issues such as memory allocation, 
functional unit allocation and binding, interconnect optimization, 
register minimization, etc., are considered here. 

A control synthesis subsystem to synthesize the controller for the 
synthesized data path. Microprogrammed control units are utilized 
here. The system takes in the schedule information from the sched
uler, the data path generated by the data path synthesizer, information 
regarding the various modules to be used from the module library, 
and generates the microinstructions and also specifies the architec
ture of the control unit. 

A netlister that takes in input from the data path synthesis subsystem 
and the controller subsystem. Using the information such as word 
size, the netlist describing the connectivity at the signal level and 
functional unit level is derived. At this level, the netlist will contain 
all the necessary infonnation that the module maker needs in order 
to generate the required hardware. 

The Module Generation Environment consists of a set of parame
terized module generators developed in SKILL running on Cadence 
Edge Framework. Using these generators, one can develop modules 
such as adders, subtracters, multipliers, registers, etc. 

The Cadence Place and Route package is used. Sphinx is integrated 
with the rest of the Cadence environment. 

A Graphical interface in SKILL has been used because of the ease of 
programming and the graphics libraries that it supports in conjunction 
with the Cadence database. 

Sphinx has been designed as an open system - in which tools 
communicate through machine readable and human readable formats. 
Additional tools can be easily integrated with the system as long as 
interface fonnats are maintained. 
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Fig. 1 Sphinx System Overview 

Algorithm Representation 

The input to the Sphinx system is a description of the algorithm 
in Verilog, a hardware description language. In addition to being a 
comprehensive and an easy to learn language, the simulation envirorunent 
provided with the Cadence Framework makes Verilog the language of 
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choice for behavioral description. The input algorithm described in 
Verilog is translated to a data flow graph representation. Traditional 
compiler techniques using Lex and Yacc tools have been used to develop 
the translator. The data flow graph nodes represent the operations in 
the input algorithm and the edges represent the precedence between 
operations specified in the algorithm. In lieu of a behavioral description, 
the input algorithm can also be input to the system graphically. An X
windows based data flow graph editor has been designed for this purpose. 
Using this editor, a user can enter and modify a data flow graph. This 
editor stores this graphical information in a form suitable for use by 
other subsystems such as the scheduling subsystem and the controller 
synthesis unit. 

Pipelining and DSP 

Due to the nature of DSP applications, computational throughput 
is a highly desirable feature in DSP architectures. DSP applications 
require throughputs that are in the range of 102 to 106 MOPS (Millions 
of operations per second). Such throughputs are hard to achieve in a non
pipe lined uni-processor. It is therefore important for us to exploit ways 
by which we can increase the throughput to suit the application domain. 
Two techniques that can be used to achieve concurrency of operations are 
pipelining and parallelism. Pipe lining can improve performance by an 
order of magnitude with very little additional hardware. Manual design 
of large pipelined systems is a rather difficult, tedious, and error prone 
process. 

In pipelining [8], each computation task is partitioned into a sequence 
of sub tasks and each one is executed during one clock cycle. Consecutive 
tasks are initiated at some regular intervals (latency) which are integral 
multiples of the clock cycle. Therefore, subtasks of consecutive tasks are 
executed in parallel and they are overlapped in time on different parts 
of the architecture. 

The throughput of a pipelined system is the number of tasks com
pletely processed by the pipeline per unit time. Therefore for an n-stage 
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pipeline, the throughput is kI(k + n -1) where, (k + n -1) is the time 
required to process k tasks. 

The speedup of an-stage pipelined system, processing k tasks, 
relative to a non-pipelined system is (nk)/(n + k -1). When k » n, 
the speedup approaches n, the number of stages in the pipeline. In order 
to achieve maximum throughput, the number of stages should be kept 
minimum. In our algorithms, the number of stages is equal to the length 
of the critical path of the given data flow graph. 

Many computer aided design systems have been proposed and im
plemented for the synthesis of pipelined and non-pipelined architectures. 
Sehwa [9] is one of the earliest systems proposed for the synthesis of 
pipelined architectures. In Sehwa, two approaches for scheduling have 
been presented - performance based scheduling and cost based schedul
ing. In [10], a force directed approach was used to schedule data paths 
with an aim to maximize the hardware sharing for a given latency. List 
scheduling has been used in several systems such as [30]. Our basic 
approach to scheduling for pipelined systems is along two lines - perfor
mance based and cost based scheduling. 

Scheduling for Pipelined Architectures 

There are two main issues that arise in the scheduling of pipe lined 
systems. Scheduling can be done to achieve one of the following [10]: 

to come up with the optimal number of hardware resources for a 
particular latency (performance constrained scheduling), or 
to come up with an optimal latency for given hardware resources 
(cost constrained scheduling) 

We will present algorithms for each of the above. The inputs to 
our scheduling algorithm are the data flow graph, information about the 
functional units such as, the operation times, cost (required to assign 
priorities to operations), latency in case of performance constrained 
scheduling and the number of operators available in the case of cost 
constrained scheduling. Several assumptions are made such as - operation 
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times of functional units are integral multiples of each other. For 
example, an adder takes 40ns and a multiplier takes 8Ons. Time to 
latch result to output buffer is 20ns. This fixes our clock period to 60ns 
- the minimum time required for an adder to operate on a set of data and 
latch the result to the output buffer. Functional units whose operation 
times are integral multiples of the fastest operator, can be structurally 
pipelined or non-pipelined. If a functional unit takes x times the time 
required by the fastest functional unit, it can be assumed to be a x-stage 
pipeline with a buffer between stages. 

Basic Scheduling Schemes 

The ASAP (as soon as possible) scheduling scheme is a simple 
scheduling technique. ASAP scheduling can be perfonned under the 
assumption that the number of resources is known and also otherwise. 
The operations in the flowgraph that have to be scheduled are first sorted 
topologically - i.e., if operation OJ is constrained to follow Oi due 
to data/control precedence, then OJ will topologically follow 0 i. The 
operations are taken one at a time in this order and each is scheduled 
into the earliest control step possible - given its dependence on other 
operations and limits on usage. ASAP has been used in several systems 
[11]. ASAP scheduling suffers from the disadvantage that critical path 
nodes may not be given priority causing non-critical path nodes to have 
greater priority than critical path nodes. ALAP scheduling on the other 
hand tends to delay the execution of each node to the latest possible 
time. Figure 2 shows the ASAP, and ALAP schedule for differential 
equation example. 

ASAP and ALAP schedules are used to determine the time frames 
for each operation in the data flow graph. The time frame is constructed 
based on the fact that an operation can be scheduled into a control step 
between its ASAP and ALAP times. Figure 3 shows the time frame 
diagram for the ASAP and ALAP schedules shown in Fig. 2 [10]. 

The width of the box indicates the probability that the node will be 
eventually placed in a control step. For example, nodes on the critical 
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ASAP Schedule ALAP Schedule 

Fig. 2 ASAP and ALAP Schedule for DitlEq 

Time Frames 
1/2 1/3 

C-Step J 

*4 

C-Step 2 *3 + 

*5 

C-Step 3 + < 

C-Step 4 

Fig. 3 Time Frame Diagram for the schedule in Fig. 2 

path (Le_, same ASAP and ALAP times) will result in a square of area 
one. Once we have the time frame diagram, we can derive a distribution 
graph for each of the operations. The distribution graph shows for each 
control step, how heavily loaded that control step is - given that all 
schedules are equally likely. It is calculated by finding the earliest and 
latest control step in which the operation can be scheduled given the time 
constraints and precedence relations. If an operation can be scheduled in 
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DG for Add. Sub & Compare 

3 DG for Multiply 

4 
4 __ 
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Fig. 4 Initial DGs for the graph shown in Fig. 2 

any of C control steps, then lIC is added to each of the control steps in 
the graph. For an operation i in the graph, 

N 

DG(i) = L P(i) 
;=1 

where P( i) = probability that the operation is scheduled in the control 
step i and N is the number of control steps [10]. The DGs derived for 
the graph in Fig. 2 are shown in Fig. 4. 

The first graph shows the distribution of the multiply operations. 
The second graph combines the distributions of the add, subtract and 
compare operations. 

Algorithm for performance constrained 
scheduling 

In performance constrained scheduling, the scheduler attempts to 
achieve a schedule with the optimum number of hardware resources for 
a given latency.' We will illustrate our algorithm using the FIR filter 
example, whose DFG is shown in Fig. 5. 

1. For the given data flow graph (DFG) with N nodes, the ASAP and 
ALAP times are computed. 
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INPUTS 

Fig. 5 Flow Graph of a FIR Filter 

2. Hopping Distance Computation: The hopping distance of a node is 
the difference between its ALAP and its ASAP schedule time. 

3. The probability factor (PF) is computed for each node. 

a. PF = l/(hopping distance + 1) 

b. Critical nodes (ASAP = ALAP), will have PF = 1. 

4. After the probability computations, the distribution graphs are gen
erated for the different kinds of operators. Given that all possible 
schedules are likely, the distribution graph shows for each control 
step how heavily loaded that step is [10]. The distribution graphs 
are generated based on the fact that for a pipeline with a latency I, 
the operations scheduled in control steps i = kl, (k = (0,1,2, .. ) run 
concurrently. Fig 6 shows the initial distribution graphs for each of 
the operators. In this example, a latency of 3 was used. 
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latency = 3 

sell ~ stages (1,4,7,10) ,mmmmmmmi 
sel2 - stages (2,5,8) sell FS! 7.s 
set3 = slages (3,6,9) 

set3 "1\1111003•4 

o I 234 5 6 7 8 9 o I 2 3 4 5 6 7 8 9 

Fig. 6 Initial Distribution Graphs 

5. Scheduling of critical path nodes is straightforward. These nodes 
are assigned to control steps based on either their ASAP or ALAP 
time which happen to be the same. The non-critical path nodes are 
scheduled based on a load distribution balancing approach. In this 
approach, the scheduler attempts to assign nodes to control steps so 
as to balance the load on the operators in all the control steps. The 
process is described as follows: 

a. Critical path nodes are scheduled according to their ASAP or 
ALAP times. 

b. All control steps in which all the operators have a PF = 1 are 
marked off since, no other operation can be scheduled in that 
control step without increasing the number of operators. 

c. For all other nodes, assignment to control step is based on the 
following: 

Each of the nodes is to be assigned a control step in the 
closed range of its ASAP and ALAP times. 

It should be assigned in such a way so as to maximize 
balancing of distribution 
Priorities can be chosen based upon: 

priority based on the cost of the functional units 
priority based on the operation times of the functional 
units 
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priority based on the munber of operations of a specific 
type in the DFG 

6. The balancing of the distribution graphs is done by assigning nodes 
to control steps which contribute the least to the DG. The nodes of a 
particular type are selected based on one of the following heuristics: 

a. Nodes are hopped in the increasing order of their PF 

b. Nodes are hopped in the decreasing order of their PF 

7. After hopping and priority rules are decided upon, nodes are assigned 
fixed control steps. Assignment is based on the following: 

a. for all control steps that a node can be possibly assigned to 
(Le., its freedom), identify the different sets (a set here is the 
collection of all the stages that should be active concurrently) 
and determine the set among the identified ones that contribute 
the least to the DG. Select that set because hopping to one of the 
stages of that set would result in the improvement of the 00. 

b. after set identification, one of the stages of the set is selected. 
When a node is assigned a particular control step, its immediate 
successor's ASAP time is affected and has to be modified. 

c. each of the stages of the set is tried for assignment. The stage 
which results in minimum modification of the ASAP and ALAP 
times of its successors and predecessors is chosen for assignment 
of the node. 

d. once a node is assigned a control step, its PF becomes equal to 
1. and the oos are updated. 

8. The whole process is repeated till all nodes have been assigned to 
a control step. 

Figure 7 shows the balanced DG for a latency of 3. As a result of the 
above procedure, the scheduler has determined that we need a maximum 
of five adders and three multipliers for the FIR filter. 
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latency - 3 
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Fig 7 Final Distribution Graph 

Figure 8 shows the schedule obtained by for the pipe lined version 
with a latency of 3. The results obtained by our algorithm compare 

C-Steps 
~~o----------------------, 

2 

3 

4 

5 

6 

7 

8 

10 

Fig 8 Final Pipeline Schedule 

well with published reports such as [9] and [10]. For example, for the 
pipe lined case, assuming that each control step has a duration of 6Ons, 
we can obtain an output every 180ns (for a latency of 3). In the case of 
both [9] and [10], the output is obtained only after 30Ons. 
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Optimal Latency Computation 

In the previous section, an algorithm for perfonnance constrained 
scheduling was presented. The aim there was to determine a schedule 
for a given latency using the minimum number of resources. While other 
systems compromise on the length of the critical path, our algorithm 
strives to maintain the length of the critical path to its minimum value. 
In several situations, the number of resources that we can use may be 
limited. In such cases, we have to detennine a schedule which will 
be most effective for the given resources. The goal is to determine a 
schedule with the minimum latency because latency affects throughput. 
For a latency of one, the throughput is maximum, however, all stages of 
the pipeline are active in every clock cycle thereby curbing any resource 
sharing. When latency is set to be the length of the critical path, then 
maximal sharing of resources can take place, however, the throughput 
reduces drastically. In effect it behaves as a non-pipe lined system. With 
the cost constrained approach which will be described briefly in this 
section, the minimum value of the latency is determined for the given 
resource set and critical path length. 

The approach is as follows: Let the number of types of resources that 
are used in the DFG be m. LetTm represent the number of operators of 
typem and therefore (Tl' T2, .•. ,T m) is the set representing the number 
of operators of each type in the DFG. Let (al' a2, ... , am) be the set 
representing the available number of resources of each type. The aim 
is to determine a minimum latency such that, given the resources that 
are available, we can get a feasible schedule. An important constraint 
on the value of the latency is that it should not exceed the length of the 
critical path. If 1/ exceeds the length of the critical path, then there is no 
feasible solution using the given hardware resources without stretching 
the pipe. The upper bound of the latency is equal to the length of 
the critical path. Let this latency be lu. If there exists a schedule 
with latency1u using the given hardware resources, then1u is the upper 
bound. If a schedule is not possible, then it means that no feasible 
schedule is possible while maintaining the number of stages equal to 
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Fig. 9 Optimal Latency Computation 
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the length of the critical path. In such cases, we can detennine the 
lu using a divide and conquer approach. Let the range of latencies be 
(11, h + 1, ... , 12 - 1, 12)' Let Inew = (h + 12)/2. At this point, we 
can try to do a performance constrained scheduling (as discussed earlier). 
As a result of the scheduling, if the number of resources required is less 
than the available number of resources, then1u = lnew. The upper bound 
of the latency is therefore in the range (11, (/1 + h) / 2 ). However, if 
the number of resources required is greater than the number available, 
it would mean that the upper bound of the latency would lie in the 
range ((It + 12 )/2, 12)' By taking these new bounds, we can perfonn 
the above procedure till we get a schedule with a latency lopt. At some 
point of time during the search process, we might arrive at a situation 
wherein we .obtain a schedule with a latency that uses the exact number 
of resoutces that are available. In such cases, we store the solution as the 
current best solution, and try and determine if the latency can be further 
reduced. By decrementing the latency by one each time, a performance 
constrained scheduling is performed till we reach a point when the 
number of resources required will be greater than those available. At 
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that point, we stop the search and the latency at that point is the optimal 
latency [opt. With a latency less than lopt, we cannot arrive at a schedule 
with the given number of resources and with a latency greater than lopt, 

we will always arrive at a schedule. 

The procedure is shown in Fig.9 and a program outline is shown 
in Fig. 9a. Initially 11 and 12 are equal to 1 and the length of the 
critical path respectively. 

/*PCS(lnew) -> Performance constrained Scheduling 
with latency Inew) 

step 1: Inew = (11 + 11)/2 
PCS(lnew) 

if req < avail /*try to decrease latency */ 
12 = Inew 
11 = linit 
step 1 

else 
if req > avail /*need more resources, increase lat*/ 

12 Ifinal 
11 Inew 
step 1 

else 
if req 

11 
avail 
11 

12 Inew 
(store solution) 
check for better soln 

endif 

Fig. 9a. Algorithm Outline for Cost Constrained Scheduling 
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Data Path Synthesis 
Data paths consist of functional units, memories or storage elements, 

and interconnection units which provide for data transfer between func
tional units and memories. Given a scheduled set of operations, the func
tional unit and memory allocation problem consists of five sub problems 
[13]: specification of the data and control flow, mapping operations onto 
available functional units, assigning values to registers, and providing 
interconnections between operators and registers using buses and multi
plexors. The goal is the minimization of an objective function such as: 

* total interconnect length 
* total functional units, register, mux, bus cost 
* critical path delays 

Data path allocation techniques are of two types - iterative/constructive 
and global. Global techniques find simultaneous solutions to a number 
of assignments at a time. Iterative/constructive schemes assign elements 
one at a time. These are more efficient but are less likely to produce 
optimal solutions. 

In our prototype design, a global allocation technique based on the 
clique partitioning algorithm has been used. In the case of register 
allocation, the goal was to bind registers to variables in a way such 
that the lifetimes of those variables bound to the same register did not 
overlap. The primary objective was to obtain a minimum set of registers. 
A weighted cluster partitioning algorithm was used to reduce the number 
of multiplexors needed in the final data path. In this section, we will 
present an outline of one of the data path synthesis procedures used in 
the synthesis of pipelined systems. Figure lOa shows an outline of the 
process. 

The data path generation procedure consists of three parts - group
ing sharable operations, allocation of interconnect and netlist generation. 
The result of the data path synthesis is a netlist which provides a list of 
operators, including registers, multiplexors, and functional units and their 
interconnection patterns. The primary inputs, outputs and control points 
are also identified. Figure lOb shows the data path generated for the 
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procedure datapath() 
begin 

read_schedule_output(); 
read_module_lib_info(); 
find_fu_info ( ); 

end 

/*determine FU type, FU rd, CS*/ 
group_stage_operators(); 
group_sharable_operators(); 
update_pred_list(); 
/*nodes are either shared operators 
or unique operators*/ 
mux reg allocation(); 
netlist=generation(); 

procedure mux_reg_allocation() 
begin 

for each sharable_fu(sfu) of same type 
begin 

if num_nodes(sfu) > 1 then 
create(mux,sfu); 
/*one mux for each input*/ 
for each node(sfu) 

begin 

end 
end for 

else 
begin 

cs = timestep(node); 
pred_list = predecessor_list(node) 
for each node(pred_list) 

insert_reg (node, pred); 
mark_external_ports(); 
update_port_connectivity(); 

endfor 

cs - timestep(node); 

end 
endif 

end 

pred_list - predecessor_list(node) 
for each node(pred_list) 

insert_reg (node, pred); 
mark_external_ports(); 
update_port_connectivity(); 

endfor 

endfor 
end 

Fig.IOa The Datapath Synthesis Process 
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Control Path Synthesis 

Control path synthesis is a very important phase in the overall 
synthesis process. The two basic approaches to control design are 
hardwired and micorprogrammed control. While hardwired control units 
might prove to be more area efficient and faster, the generic nature 
and programmability of microprogrammed control units make them a 
viable choice, specially in a rapid prototyping environment. Controlling 
pipelined datapaths is however a complex process using either of these 
schemes. In a pipelined system, each stage of the pipeline may be 
working on an independent set of data depending upon the latency. If 
the pipeline is capable of handling loops and conditionals, the control 
becomes even more complex. 

Microprogrammed control of pipe lined structures can be pe
formed along two lines - one where each microinstruction con
trols the entire pipeline system simultaneously and the other where 
data and microinstruction travel together in the pipeline. In 
[12], these two approaches have been referred to as time sta
tionary control (Fig. 11a) and data stationary control (Fig 11b). 

CONTROL 

MEMORY 

(a) (b) 

Fig 11. (a) Time Stationary Control 
(b) Data Stationary Control 

MEMORY 
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In the case of the time stationary approach, only one microinstruction 
is active at a given time and it defines the state of the entire machine. In 
the case of the data stationary control, the datwn' s entire travel path is 
defined at the beginning of each clock cycle [12]. Furthermore, there are 
are multiple microinstructions active at any given time. In our prototype 
design, we have chosen to use a time stationary approach to the control 
of the pipelined system. Loops and conditionals are not included in the 
prototype design. 

The control synthesis system follows the scheduling and datapath 
synthesis. The datapath synthesis phase generates the netlist of the 
hardware which has to be scheduled according to the schedule generated 
by the scheduling subsystem. During datapath synthesis, appropriate 
control points are also identified in conjunction with the module library. 
The main tasks of the control synthesizer subsystem are: microinstruction 
format generation, microinstruction generation and specification of the 
control unit. 

Fig 12 shows the format for each microinstruction. In the prototype, 

255 254.M M. ••• • •• 3 2 1 0 

I 01 0 1 01 ~ 0 

~-1 ...... ~7uJ r t 
'---_____ ..... !lMusn Mud Mu!I!J I I 

Mus Controls for shared FU's Controls for Output . Unused Bits 
RegistersofFU's End bit 

Mult-actlve bit 

Fig 12. Microinstruction Format 

the microinstruction has been designed to have a worst case length of 
256 bits. However for smaller designs, this length will be reduced. The 
microword has bit positions for each of the hardware components in the 
data path including functional units, registers and multiplexors_ Because 
of the nature of the serial-parallel multipliers used, multipliers require 
n clock cycles to compute a result where n is the datapath wordlength. 
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Adders and Subtrators on the other hand, require only one clock cycle to 
compute a result. This means that multipliers are active for more than 
one clock cycle for each datum. The rnicroword has a bit position M to 
indicate whether the multiplier is active in any control step. The second 
bit position A indicates whether an adder, subractor or comparator is 
active in a control step. If both M and A bits are not set, it means that 
the particular instruction is a NOP. Each functional unit has an output 
register (Fig. 10). The rnicroword has bit positions for each of the 
output registers. In the case of multipliers, since one of the inputs is 
serial, data travels through a parallel to serial shift register to one of its 
inputs, and the output which is generated in serial is stored in a serial 
to parallel shift register (Fig. 10). Control bits for these and the rest 
of the registers in the datapath are provided in the control word. The 
sharability of the operators involves certain data routing mechanisms 
handled by multiplexors. The control word has bit positions for each of 
these multiplexors in the datapath. All the bit positions are dynamically 
allocated for each datapath that is synthesized. 

Fig. 13 shows the architecture of the microprogrammed control unit. 
The main building blocks are the micro-control memory, a microprogram 
counter, microinstruction register and additional circuitry for address 
generation. In addition there is another control block that does the basic 
clock routing and event sequencing. The main tasks that are carried out 
in and by the control unit are: 

1. Microinstruction access and loading 

2. Appropriate signals are sent to the multiplexors in the datapath for 
proper functional unit input selection. 

3. Signals (clock pulses) for shifting bits in and out of the input and 
output shift registers (including serial to parallel and parallel to serial 
registers in the case of multipliers, and the regular parallel in parallel 
out registers). 

4. Control signals to the output registers of the functional units. 

5. Control signals to the functional units. 
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Fig. 13. The Microprogrammed Control Unit 

The detailed operation of the control unit is beyond the scope of this 
chapter. Details are available in [14]. 

The Physical Design Environment 

In Sphinx, the physical design environment (PDE) consists of several 
interacting tools integrated with the Cadence Edge Framework. Fig. 14 
shows the overview of the PDE. 

The goal of the PDE is to bring fonn to the various abstract com
ponents manipulated by the higher level tools in the scheduling and data 
path/control path synthesis phases of the methodology. The PDE has been 
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Fig. 14. The Physical Design Environment 

implemented in SKILL - a procedural design language. SKILL has been 
chosen as the medium of implementation because of the ease with which 
one can access and manipulate the design data. The PDE comprises of a 
set of parameterized module generators along with a netlister and other 
associated tools to aid in the generation of the target architecture. In 
addition to providing for tools that generate the actual layouts for the 
architecture, the PDE also integrates the rest of the system with the un-
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derIying Cadence framework. The core sub tasks include netlisting and 
module generation. 

The Netlister 
The Netlister derives its input from the outputs of data-path synthe

sis and microcontroller synthesis programs, reading them in the fonn of 
graphs. Using infonnation on word size, it generates a netlist specifi
cation of the system, describing the complete connectivity at the signal 
level, functional unit by functional unit. It also specifies, for each func
tional unit, its size and type to aid in the module generation process. The 
overall process is shown if Fig 15. 

( Start 

r 
dat.in Assign nets to input 

form data·path 
and output pins of FU 

synthesis 
Update net inormation 

1 
cD.in Assign nets to input 

and output pins of FU 
micro· controller Update net inormation 
synthesis 

]rom 

1 
Locate control signal nets 

cs.in specified as outputs of FU 

from micro-controller assign to control input of 

synthesis respective FU 

J 
( Write 

Outputs 

Fig 15. The Netlisting Process 
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The first step in netlisting is the creation of a net database. The 
net database contains information for every pin considered. Information 
stored in the database includes pin bit position, port number, FU number, 
the driving port and corresponding FU ( if it is an input pin). It is 
assumed that the bit sequence of pins is maintained between the driving 
and driven terminals (i.e. pin i on a port will be driven by pin i on 
the driving port ). 

This net database is searched for existing nets on pins during net 
assignment. If a pin on FU has a net already assigned to one of the pins 
it connects to, then the same net name is assigned to this pin, else a new 
name is created and assigned. Thus if an input pin is not found in the 
net database, it is assigned a new net name. Then, when the output that 
drives it is considered, the search will reveal the net associated with the 
input pin that this output pin drives, and assigned to the output pin. Thus 
connectivity is ensured over the FU's of the system 

The netlisting process consists of three parts. Datapath and control 
synthesis subsystems provide the netlister with data in the following ascii 
formats. 
<FU id #> <FU type #> <# of left inputs> 

(for each left input .. ) <from FU> <from port> 
of right inputs> <# 

(for each right input.) 
<# of 

(for each output .. ) <# of 

( for each fanout .. ) 

<from FU> <from port> 
outputs> 
fan outs for that output> 

<to FU> <to port> 

The data specified by the files in the above format provide the netlister 
with a complete interconnection pattern of the entire data path and 
control unit. Using these interconnection patterns and information from 
the module database, the netlister subsystem assigns net names to each 
terminal of the components defined by the datapath and control unit 
systems. The output of the netlister is a plain ascii file with each record 
having the following format: 
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<FU type #> <FU I size> <FU 0 size> 

o <list of output nets> 
I <list of input nets> 

C <list of control nets> 

The output of the netlister is then used by the moduleMaker. 

The moduleMaker 

The moduleMaker environment is where the abstract descriptions of 
the datapath and the control unit become a physical reality. Figure 16 
shows the structure of the module making environment. At the core of 

MODULE MAKER 

STRM elF 

Fig. 16 The Module Making Environment 
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the environment is a collection of parameterized module generators work
ing in conjunction with a centralized module base cell library. The base 
cell library consists of primitive cells ranging from simple gates to flip 
flops to adder cells. The input to the moduleMaking environment is the 
netlist generated by the Netlister. The module Maker parses the netlist 
file extracting FU identification and size information. It then searches 
a module mapfile, fu2name.map that maps FU identification codes to 
module names and module generator procedures. The map file has en
tries that have the following format: 

FU ~ MODULE GEN NAME MODULE PREFIX PROCEDURE NAME CO~lHENTS 

The file is formatted with comments in a forulat easily readable and 
parsed by IL. 

When it locates the FU code that matches the search key, the module 
prefix field is used to create a block for the module. The blockName 
assigned is generated by concatenating the prefix to an underscore and 
the size of the functional unit. The moduleMaker then loads the SKILL 
parameterized module generator specified by module generator name 
and makes a call to the procedure procedure name, passing origin 
coordinates and the module size as parameters. This is repeated for all the 
functional units specified in the netlist that already do not have existing 
generated modules. The output of each of the module generators is a 
Cadence Layout file. Using standard translation techniques, stream and 
CIF versions of the layouts are also generated. At the end of the module 
making process, the module maker has accumulated several layouts which 
are logically interconnected. An example module generator to generate 
parameterized full adders and a prototype program for the moduleMaker 
are shown in Appendix A. 

Summary 

In this chapter, we have presented a menthodology for the synthesis 
of application specific integrated circuits. The methodology covers the 
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complete design flow from behavioral specifications in Verilog to the 
generation of mask level descriptions in CIF/Stream. 

In the prototype system, there are tools for supporting different kinds 
of scheduling and allocation algorithms for the synthesis of non-pipe lined 
and pipe1ined architectures. These tools facilitate a variety of search 
space tours. The low end physical design tools have been integrated with 
the basic Cadence tool set and together they are very versatile. The using 
of SkiII as the design and extension language makes the modifiabilty of 
the low end physical tools simple. 

The methodology is still undergoing constant change with new tools 
being added at all levels in the methodology. The methodology is 
being extended to allow system level partitioning, synthesis of multichip 
modules, and the use of VHDL as a behavioral specification language. 
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Appendix A Sample SKILL Programs 

Sample module generator 

iN BIT ADDER parameterized module generator 
jdesign: ajay oath, ramakrishna. 
;Modified Mar 1993 for SPHINX 
load "/home/u18/SPHINX/module gen/library" 
procedure ( n_adder(xloc yloc inputs) 
prog ( (blob) 
saveEnv( ) 

printMessage("Generating %d bit Adder "inputs) 
layer - getCurrentLayer() 
setWEnvVar(lIscreenGridMultiple" 8) 
setMaster(" /home/u18/CellLib fa1l9l 2micron/base cells/adder 2 layout") 
for (i 0 (inputs -1) - - - -
instance(xloc+grid(i*l7):yloc) 
setEnvVar("pathWidth" 3) 
setLayer ( "meta12" ) 
path(xloc+grid(i*17)+3.5:yloc-2 xloc+grid(i*17)+3.5:yloc+grid(11)+2) 

;to stretch the input A of the adder on either side .. 
sprintf(blob concat("A" i» 
label(xloc+grid(i*17)+2:yloc-4 blob nit "" 2 nn) 

label(xloc+grid(i*17)+2:yloc+grid(11)+2 blob "" "" 2 "") 
imake pin for abgen 

setLayer{ "meta12" "pin") 
setEnvVar("labelText" blob) 
setEnvVar("io" "input") 
relRectangle(xloc+grid(i*17)+2:yloc 4 4) 
relRectangle(xloc+grid(i*17)+2:yloc+grid(11)-2 4 4 ) 

setLayer("meta12") 
ito label A's in the module ... 

path(xloc+grid(i*17+11)+3.5:yloc-2 xloc+grid(i*17+l1)+3.5:yloc+grid(11)+2) 
ito stretch the input B of the adder on either side .. 

sprintf(blob concat("B" i)) 
label(xloc+grid(i*17+11)+2:yloc-4 blob "" "" 2 "") 
label(xloc+grid(i*17+ll)+2:yloc+grid(11)+2 blob "" "" 2 "") 

;make pin for abgen 
setLayer("metal2" "pin") 
setEnvVar("labelText" blob) 
setEnvVar("io" "input") 
relRectangle(xloc+grid(i*17+11)+2:yloc 4 4) 
relRectangle(xloc+grid(i*17+11)+2:y1oc+grid(ll)-2 4 4 ) 

setLayerC"metalJ") 
ito label S's in the module . .. 

path(x1oc+grid(i*17+16)+3.5:y1oc-2 xloc+grid(i*17+16)+3.5:yloc+grid(11)+2) 
ito stretch the input 5 of the adder on either side .. 

sprintf(blob concat("S" i» 
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label(xloc+grid(i*17+16)+2:yloc-4 blob "It "" 2 "") 
label(xloc+grid(i*17+16)+2:yloc+grid(ll)+2 blob "" "" 2 "") 

;rnake pin for abgen 
setLayer( "meta12" "pin") 
setEnvVar("labelTcxt" blob) 
setEnvVar( "io" "output") 

reIRectangle(xloc+grid(i*l7+l6)+2:yloc 4 4) 
relRectangle(x1oc+grid(i*17+16)+2:yloc+grid(11)-2 4 4) 

sctLayer ("meta12 ") 
ito label Sum's in the module. 

if ( (i ~~ 0) then 
path(xloc+grid(I)+3.5:yloc-2 xloc+grid(l)+3.5:yloc+grid(ll)+2) 
label(xloc+grid(I)+2:yloc-4 "Carry In" "" "" 2 "") 
label(xloc+grid(l)+2:yloc+grid(II);2 "Carry In" "" "" 2 "") 

;make pin for abgen 
set Layer ( "meta12" "pin") 
setEnvVar("io" "input") 
setEnvVar ( "label Text" "C") 
reIRectangle(xloc+grid(l)+2:yloc 4 4 ) 
reIRectangle(xloc+grid(l)+2:yloc+grid(ll)-2 4 4) 

setLayer("meta12") 
ito label Carry In in the module. 

) 

if( (1 == inputs-I) then 
path(xloc+grid((inputs-l)*17+15)+3.5:y1oc-2 

xloc+grid((inputs-1)*l7+15)+3.5:y1oc+grid(ll)+2) 
label(xloc+grid( (inputs-l)*17+14)+2:yloc-4 "Carry_Out" r," ~" 2 "") 
label(x!oc+grid«inputs-l)*17+14)+2:yloc+grid(11)+2 "Carry_out" "" 2 U") 

;make pin for abgen 
setLayer(n me ta12 u "pin") 
setEnvVar(Uio U "input") 
setEnvVar("labelText U "COU) 
reIRectangle(xloc+grid((inputs-l)*l7+l5)+2:yloc 4 4) 
re1Rectang1e(xloc+grid((inputs-l)*17+15)+2:yloc+grid(l1)-2 4 4 ) 

setLayer (l'meta12") 
ito label Carry_Out in the module ... 

) 
;make vdd and gnd pins for the module 

;setLayer("metall u "pin") 
; setEnvVar ( "io" "input") 
;setEnvVar("labelText" "vdd!") 
;re1Rectangle(xloc+grid(i*17)+2:yloc+grid(ll)-6 4 4 ) 
; setEnvVar (" label Text to "god!") 
;relRectang1e(xloc+grid(i*17)+2:yloc+3 4 4) 

;setLayer("meta12") 
) 

setMaster("/horne/ul8/CellLib_faI191_2rnicron/butt_cells/bot_poly_poly layout") 
for(j 1 (inputs-l) 
instance(xloc+(grid(j*17)-4):yloc) 

) 

sprintf(blob concat(inputs "BIT ADDER")) 
label(x1oc+grid(inputs*17/2)-grid(2):yloc+grid(l2)+2 blob "" "" 4 "") 
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label(xloc-6:yloc+grid(11)+4 "LSB" "" "" 4 "") 
label(xloc+grid(inputs*l7):yloc+grid(1l)+4 "MSB" "" "" 4 '''') 

;rnake a prboundary bounding box for abgen 
setLayer(ltprboundary") 
rectangle(xloc:yloc-6 xloc+grid(inputs*17) :yloc+grid(11)+4 

jchange representation type to standard cell 
property("" RRepresentation/type" "standard") 

;now the bounding box, and hence the placement area is known 
;save dimensions for returning to moduleMaker 
dimhgt ~ grid(ll)-2 
dimwid = grid(inputs*17) 
bname = getEnvVar("blockName lt ) 

redraw( ) 
setLayer (layer) 

37 

; open symbol rep for editing .. , 
; invoke the pdverify abgen, specifying layers file and rules fire 
save ( ) ; save layout 
graphEdit("%s symbol" bname) 
printMessage("Making Abstract reps .. It); 
xt =system("pdverify abgen -1 /home/u18/Tools/layers -r 

/home/u18/Tools/Mosistools/ABSTRACT GENERATOR RULES FILE 
%s layout" getEnvVar("blockName")) 

if«xt !~ 0) then 
printMessage("unsllccessfull abgen") 
ringBell () 
) 

) 

ithis is where we try and make symbol for the module 
prog ( (blob) 
printMessage("Making Symbol .. ") 

;file to put mapping coordinates to .. 
sprintf(mapfpath concat(getEnvVar("blockName") "/symbol.map")) 
outf ~ outfile(mapfpath) 
print length ~ 100 
printlevel ~ 100 

iinitlialize the lists 
Alist nil 
Blist ~ nil 
Clist nil 
ilist nil 
olist - nil 
clist nil 

;gu is the increment unit for symbol to make it a decent size 
gu ~ .0625 
xloc = 0 
yloc - 0 
width - 0 

;decide on the height of the symbol box 
height - lO*gu + inputs*gu 
setEnvVar("fontHeight" .1) 
setEnvVar(·labelLayer" "pinlab") 

ifor all bits make pins Ai a1 and S1 
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for(i 0 (inputs-I) 
sprintf(blob concat( "A" i» 
setEnvVar('labelText' blob) 
setEnvVar(" io" "input") 
setLayer( "device") 
line(xloc+4*gu:yloc xloc+4*gu:yloc+2*gu) 
setLayer("wire" "pin") 
relRectangle(xloc+3.5*gu:yloc+2*gu l*gu l*gu) 
label(xloc+3*gu:yloc-2*gu ) 

;made input pin A 
;add location to inputA list 

Alist - append(Alist list(xloc+4*gu yloc+2.S*gu» 
sprintf(blob concat('S" i» 
setEnvVar('labelText" blob) 
setEnvVar("io" "output") 
setLayer("device") 
line(xloc+6*gu:yloc-height xloc+6*gu:yloc-height-2*gu) 
setLayer("wire" "pin") 
relRectangle(xloc+S.S*gu:yloc-height-3*gu l*gu l*gu) 
label(xloc+S*gu:yloc-height+2*gu ) 

;made output pin S 
;add location to output list 

olist - append(olist list(xloc+6*gu yloc-height-2.S*gu» 
sprintf(blob concat("B" i» 
setEnvVar("labeIText' blob) 
setEnvVar(nio" "input") 
setLayer("device") 
line(xloc+8*gu:yloc xloc+8*gu:yloc+2*gu) 
setLayer("wire" "pin") 
relRectangle(xloc+7.S*gu:yloc+2*gu I*gu l*gu) 
label(xloc+7*gu:yloc-2*gu blob ) 
made input pin B 

;add location to inputB list 

) 

Blist - append(Blist list(xloc+8.0001*gu yloc+2.S*gu» 
xloc - xloc + 8*gu 
width - width +8*gu 

;make one input list 
ilist = append(Alist Blist) 

;place carryin pin and label 
setEnvVar("labelText" "C") 
setEnvVar("io" "input") 
setLayer("device") 
line(O:O O:2*gu) 
setLayer("wire" "pin") 
relRectangle(-.S*gu:2*gu l*gu l*gu) 
label(O:-2*gu ) 

;append carry in to input list 
ilist - append(ilist list(O.OO 2.S*gu» 

;place carry out pin and label 
setEnvVar(OlabelText' "CO") 
setEnvVar(~io· ·output") 
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setLayer("device") 
line(xloc+4*gu:yloc-height xloc+4*gu:yloc-height-2*gu) 
setLayer( "wire" "pin") 
relRectangle(xloc+3.S*9u:yloc-height-3*gu l*gu l*gu) 
label(xloc+3*gu:yloc-height+2*gu ) 

;add carryout to output list 
olist - append(olist list(xloc+4*gu yloc-height+l.S*gu» 

;save i/o pin locations to file 
println(olist outf) 
println(ilist outf) 
println(clist outf) 
close(outf) 

;make device box 
setLayer ( "device II ) 

rectangle(-4*gu:O xloc+8*gu:yloc-height) 
imake bounding box 
setLayer (" instance" ) 
rectangle(·4*gu:3*gu xloc+8*gu:yloc-height-3*gu) 

isymbol looks ok .. gotta add some properties 
;adding instanceNarne property 
setEnvVar("labelLayer" "devlab") 
label(xloc/2-4*gu:yloc-height/2 "Adder" 
setEnvVar (" labelLayer" "instname") 
l-label(xloc+8*gu:yloc "[@instanceNamej") 
property(l "Label/labelType" "nlpExpr") 
save( ) 
setLayer(layer) 
setWEnvVar("displayStartLevel" 0) 
setWEnvVar("displayStopLevel" 20) 
fullPlus () 

;return module dimensions 
restoreEnv ( ) 
return(list(dimhgt dimwid» 
) 

) 

Listing of moduleMaker 

;this program is a SKILL/IL program to create modules 
;it reads the netlist and the mapping files 
iand opens the corresponding hierarchies of modules 
ithe representations created are layout, abstract, symbol 
;design: ajay nath, ramakrishna. 
procedure(moduleMaker() 
;CAUTION netlist parsing area starts here (IL) 
;specify netlist input and map file names here 
netlist - "/home/u18/SPHINX/work/net.out" 
mapfile - "/home/u18/SPHINX/work/fu2name.map" 
dimfile - "/home/u18/SPHINX/work/module.dim" 
nfile - infile(netlist) 

39 
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if(nfile == nil then 
printf("Cannot open netlist %s for reading\n,t netlist) 
exit(l) 
) 

;printf("Reading Netlist %s \n" netlist) 
netexpr = lineread(nfile) 
while( (netexpr != nil) 
if( (netexpr !~ t) then 

;parse the fu id and the input and output sizes from the list 
fu_id car(netexpr) 
fu_is = nth(l netexpr) 
tu_os = nth(2 netexpr) 

;printf("checking for fu %d sizes %d %d \n" fu id tu is fu OS) 

;get the module generator path for the fu by scanning the ;apfile 
modlist ~ getpath(fu id) 
modprefix = car(modlist) 
modpath ~ nth(l modlist) 
procname = nth(2 modlist) 

;call the module generator ( ?? if input size != output size 
;get the heirarchy blockName 

heir=concat{"/home/u18/SPHINX/work/" modprefix " " max(fu_is tu_os» 
;get the module generator program name 

modgen ~ concat("/home/u18/SPHINX/module_gen/" modpath) 
;printf("Making module Is\n" heir) 

;check to see if module exists, else call module generator 
if((infile{get_string(modgen» !- nil) && (isDir(heir) ==nil» then 
load(get_string(modgen)) 
graphEdit('ls layout' get_string(heir) 
dimlist = eval{ list(procname 0 0 max(fu_is fu_os») 

;rnodule generator returns the dimension of module, append to file 
dfile - outfile(dimfile 'a") 

) 

) 

fprintf(dfile "Id Id Id Id Id\n' fu id fu os fu is car(dimlist) cadr(dimlist)) 
close(dfile) 

netexpr = lineread(nfile) 
) 

; printf ( "Net list %5 read. in completely\n" netlist) 
) 
pracedure(getpath(fu num) 

prog( (mfile mapexpr) 
mfile - infile(mapfile) 
if(mfile ~~ nil then 
printf("Cannot open %5 for reading\n" mapfile) 
exit( 1) 
) 

;printf('Reading mapfile Is \n' mapfile) 
mapexpr = lineread(mfile) 
while«mapexpr !- nil) 
if( ((mapexpr !- t) && (car(mapexpr) ~~ fu_num)) 
return(list(nth(2 mapexpr) nth(l mapexpr) nth(3 mapexpr))) 

) 
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) 

mapexpr = lineread(mfile) 
) 

printf ("ERROR 
exit(l) 
) 

Functional unit %d not found in map\n" fu num) 

41 
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2 
SYNTHESIZING OPTIMAL 

APPLICATION-SPECIFIC DSP ARCHITECTURES 

Catherine H. Gebotys 
Department of Electrical and Computer Engineering 
University of Waterloo, Waterloo Ontario N2L 3G 1 

This chapter will examine previous research on architectural synthesis for 
DSP systems including a defmition of the problem and a description of some 
approaches currently being used to solve it. Solution approachs to high level 
synthesis problems are heuristic-based algorithms, graph-theoretical based algo
rithms, and integer programming based optimizations. The focus of this chapter 
is on the later approach. After an introduction to integer programming is 
presented, two IP models are defined which simultaneously solve several impor
tant tasks for DSP architectural synthesis. Results are reported and concluding 
remarks will be made concerning both models and their impact on this important 
area of research. 

Due to emerging low cost digital VLSI technologies, the interest in 
application-specific architectures has become widespread. Not only can high 
volume products benefit from VLSI but even medium to low volume DSP appli
cations are economically viable. For example VLSI programmable technolo
gies, such as FPGA, which offer low cost VLSI (zero non-recurring engineering 
costs) has widened the market. FPGAs are a very popular vehicle for fast proto
typing and offer reprogrammability. There are several advantages of 
application-specific architectures over using instruction-level programmable off 
the shelf DSP processors. First the architecture itself can be tailored to the 
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perfonnance requirements of the DSP application. This is unlike off-the-shelf 
components which may not offer sufficient perfonnance. For example one can 
significantly reduce latency by adding more functional units (multipliers, accu
mulators). Furthennore smaller controllers may allow more registers to be put 
on the VLSI chip thus increasing the perfonnance of DSP application-specific 
architectures. In order to take advantage of the offerings of new VLSI technolo
gies and obtain significant perfonnance improvements over off-the-shelf proces
sors one needs a tool which can explore a wide range of application-specific 
architectures. The tool should take into consideration the application perfor
mance requirements as well as the constraints of the VLSI technology to obtain 
the optimal architecture for the chosen VLSI technology. The tool for this task 
is called a high level synthesis tool or architectural synthesis tool. The input for 
this synthesis tool is a description of the DSP application in a data flow graph, 
z-diagram, or language input fonnat. The DSP applications perfonnance 
requirements must also be specified nonnally in tenns of speed, latency, and 
throughput. The application constraints would be a description of the timing or 
frequency of arrival of input signals, requirements on timing of output signals 
and other I/O signal timing constraints. The technology constraints would be the 
maximum number of I/O pins per chip, and the maximum area per chip. The 
output of the architectural synthesizer is a description of the architecture 
(number of multipliers, ALUs, register, busses, etc) and a schedule which 
describes how the application is to be perfonned on the architecture by mapping 
the operations in the application into control steps. 

2.1 INTRODUCTION 

In general tenns the objective of high level architectural synthesizers is to 
transfonn an input algorithm (or behavior) into a hardware architecture that 
minimizes an area-delay cost function. It is well known that these early deci
sions made during high level synthesis have the greatest effect on the final VLSI 
design implementation. It is critical to consider interconnect costs during syn
thesis since interconnect is seen as the key to high perfonnance architectures. 
Synthesizers should efficiently produce optimal architectures and handle com
plex constraints and cost functions. In addition functional pipelining and inter
facing to asynchronous and analog processes must be supported during architec
tural synthesis. The architectural synthesis problem involves several interdepen
dent scheduling and allocation subtasks, all of which must be solved simultane
ously in order to provide optimal solutions. The architectural synthesis problem 
is believed to be NP-hard, since many of its subtasks have been defined as 
NP-complete. For a thorough review of this problem see[l] . 
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This chapter examines briefly the previous researched approaches to archi
tectural synthesis including a defmition of the problem solved and the approach 
used to solve it. Solution approachs to high level synthesis problems are 
heuristic-based algorithms, graph-theoretical based algorithms, and integer pro
gramming based optimizations. The focus of this chapter is on the later 
approach. After an introduction to integer programming is presented, two IP 
models are defined which simultaneously solve sverai important tasks for DSP 
architectural synthesis. Results are reported and concluding remarks will be 
made. 

We first define some frequently used terms the reader will find helpful in 
understanding the function of different subtasks of synthesis. There exist vari
ous media for input representation. We will assume the most general (inter
mediate) form of an input algorithm, a directed acyclic graph (DAG), where the 
nodes represent the code operations, and the directed edges (arcs) represent the 
data transfers between code operations. Any algorithm or z-diagram can be 
represented by a DAG. Modules refer to hardware units which will be defined 
(in functionality) with operations at some later point. Functional units refer to 
digital hardware units (for example an ALU) that perform a defined set of com
putations on the input data and provide new output data. For example one func
tional unit may be a 3 cycle pipelined multiplier and another functional unit may 
be a 2 cycle pipelined multiplier (not pipelined). Scheduling refers to the assign
ment of code operations to a control step. Since processing is synchronized with 
a global clock, time is an integer value. We use the term control step (cstep) to 
represent the state of the synthesized architecture where control step I is present 
after the architecture is powered up and initialized. The execution time of the 
algorithm (Te) is defined as the minimum number of csteps required to execute 
the input algorithm or DAG on the synthesized architecture. The latency (or 
delay) is the execution time multiplied by the clock period. Throughput is the 
number of applications completed in one cstep. Allocation is the determination 
of the number of hardware units such as functional units, registers, and busses. 
For example, four registers may be allocated, however the variables that are 
stored in each register have not yet been determined. A schedule may require 3 
modules, which may be defined (through binding code operations; addition and 
multiplication) as 2 adders and one add/multiply functional unit. If the 
add/multiply functional unit does not exist in the library then 4 functional units 
(3 adders and 1 multiplier) may be necessary. The number of modules is a lower 
bound on the number of functional units to be allocated. In general the term 
resource will refer to functional units, busses, and registers. 
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Design style defined in [2] refers to the types of functional units, for exam
ple an adder or an ALU, to be used in synthesis. For example if one chooses a 
115ns clock period and one type of multiplier with a lOOns propagation delay 
and 20ns delay adder, then one cycle is required by the multiplier and in one 
cycle four successive additions can be performed (thus four adders can be 
chained together). However there may exist another multiplier in the library 
which has a larger latency, 190 ns, but smaller area Therefore it may be possi
ble to chain the multiplier and adder together, therefore defining a new type of 
functional unit (which computes (x * a + b) in two clock periods). Most DA 
tools assume that the clock period is defined before synthesis so that the opera
tional characteristics of the functional unit are known. They also assume that the 
selection of functional units from the library is done before high level synthesis. 
However the clock speed, design style selection and scheduling and allocation 
tasks are highly interdependent. 

The output of the architectural synthesizer that we will address are the fol-
lowing: 

total number of control steps, functional units, busses and/or multiplexors, 
registers and/or register files, memory. 

scheduling: code operations to control steps. 

junctional unit allocation and selection 

register allocation 

interconnect allocation 

One must also determine the type of hardware (type of functional units or 
memory versus registers) to be used in the final architecture. In some cases the 
former is done during architectural synthesis. The final schedule and binding 
produced by the architectural synthesizer can be transformed into a control table 
for input to a logic synthesizer. 

The architectural synthesis problem involves many subtasks such as 
scheduling (S), resource allocation (A), and resource binding (B). However 
each of these steps are heavily interdependent. An example of the interdepen
dence between the subtasks is shown in figure 2.1. We will use the term 
hardware resource to describe the number of registers, functional units, and 
busses. For example a fixed schedule directly determines the minimum number 
of functional units and registers (allocation). The subsequent binding of these 
resources directly determines the minimum number of multiplexors (allocation) 
required in a multiplexed architecture (S => A (::) B). Another design approach 
which illustrates the interdependence in figure 2.1 is to first perform resource 
allocation. This allocation will constrain the scheduling and subsequently 
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constrain the binding (A =::} S =::} B). It is also easy to see that binding affects 
scheduling (B =::} S). For example operations bound to the same resource cannot 
be scheduled at the same time. 

Figure 2.1. Subtask interdependence in architectural synthesis. 

The optimal approach to solving architectural synthesis is to simultaneously 
consider all tasks at the same time. However since this is a very complex 
approach most researchers have concentrated on one or a limited number of sub
tasks to be solved simultaneously. We will briefly review research in this field 
with emphasis on graph theoretical results and integer programming (IP) 
approaches. We will describe the complexity of these subtasks and overview the 
iterative/simultaneous approaches to architectural synthesis. More detailed 
analysis of architectural synthesis material can be found in papers such as[3, 4] . 

2.2 PREVIOUS RESEARCH IN HIGH LEVEL SYNTHESIS 

In this section we will study the various subtasks associated with architec
tural synthesis. The graph theoretical problems, their complexity and solutions 
are discussed for independent and simultaneous solutions of subtasks. The 
scheduling of a DAG without resource constraints can easily be performed in 
polynomial timerS] using the well known critical path method, CPM. This algo
rithm calculates the critical path and the as soon as possible (asap) and as late as 
possible (ala~) control steps[5] for each node of the DAG. This algorithm exe
cutes in O(n ), where n is the number of nodes in the DAG. An example DAG, 
representing the operations w=y*z;.x=«a+b)-c*d+w) and illustrating the asap 
and alap schedules, are shown in figure 2.2 a) through c). The bottom empty cir
cle is used to ensure that the variables x and w are output at the end of the algo
rithm. The alap schedule can be calculated for any upper bound on the number 
of clock periods by incrementing the previous alap csteps by (TeVB-TCP) 

number of csteps, where T CP stands for the minimum number of csteps in the 
critical path. The asap schedule obviously is valid for any upper bound on Te. 

Therefore this processing needs to be done only once per application (or input 
algorithm). 
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(a) (b) (c) (d) 

Figure 2.2. DAG (a) and corresponding ASAP (b), ALAP (c), and critical path 
identification (d). 

The asap and alap schedules have not been successfully used for subsequent 
resource allocation in architectural synthesis because most often they require too 
many hardware resources. In figure 2.2 the asap and alap requires 3 modules (2 
* and 1 +/-) and 2 modules (1 * and 1 +/-) respectively. However these 
schedules are very important for an initial analysis of the synthesis problem by 
providing the range of valid control steps (which do not violate any partial order 
constraints) for each code operation. 

Almost all resource allocation in architectural synthesis problems for a fixed 
schedule have similar structure. We will represent a graph, G=(V,E) as a set of 
vertices V and edges E. In general the scheduled DAG is transformed into 
another (conflict or compatability) graph. By further classifying this graph 
(chordal or interval) one can either solve the problem optimally using a known 
polynomial time algorithm or heuristically using a similar algorithm. We will 
use register allocation as an example to illustrate the transformation and solution 
process that previous research [6] has examined. Not only is register allocation 
an interesting subtask, but its simple solution for basic blocks presented in this 
section becomes even more difficult (NP-complete) to solve simultaneously with 
the scheduling problem. 

Although some of the problems presented in this section for general graphs 
are NP-complete, such as vertex coloring, they can be optimally solved using 
known algorithms in polynomial times if the graph is of a particular type[7] . It 
is interesting to note that the same types of characterizations exist in integer pro
gramming (IP) and often for the same problems. 

We assume that the DAG is scheduled in figure 2.3 a) in four control steps 
(including the last cstep for the last node whose incident edges are the output 
variables). Each variable can be represented in an interval representation shown 
next to the DAG. In the interval representation, the lifetime of each variable is 
represented by a vertical edge starting at the cstep the variable is defined (output 
by a code operation) and ending at one cstep before the latest cstep where an 
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operation uses the variable as input. This interval representation is convenient 
for register allocation because we have to find sets of variables, such that in each 
set the lifetimes of the variables are disjoint (or in other words no two lifetimes 
of the same set have the same cstep). Thus each set represents a register. We 
will next define the graphs and then define the algorithms. 

, 21 
4 

(a) 

Figure 2.3. Scheduled DAG (a) and the variable lifetimes shown with an inter
val representation in (b). 

The compatibility graph, G C , is formed from the interval representation. 
Each edge of the interval representation becomes a vertex of the graph GC • 

Edges are formed between all pairs of vertices in GC whose corresponding vari
able lifetimes are disjoint (originally called "comparable" vertices[8)). In other 
words two variable lifetimes are disjoint if there exists no cstep that intersects 
the lifetime of both variables. The conflict or interval graph[7] • Gi • uses the 
same definition of vertices as GC however edges are formed between all pairs of 
vertices whose variable lifetimes are not disjoint or in other words have overlap
ping lifetimes (or are "incomparable"). Another characteristic we can observe 
from these two graphs is that GC is the complement I of G i . 

Register allocation is performed on GC by a clique partitioning algorithm. 
Clique partitioning essentially removes edges from GC so that the remaining 
graph is a number of disconnected cliques. The algorithm tries to produce a 
minimum number of disconnected cliques. A clique of a graph G is a maximal 
complete subgraph. We will use the notation Kx to represent a clique on x 

nodes. The number of cliques is equivalent to the number of registers. Alterna
tively the register allocation problem can be solved on graph G i using vertex 
coloring. The vertex coloring of the interval graph, can be solved using a poly
nomial run time algorithm or the left edge algorithm also presented for solving 
channel routing problems in[8] . The number of colors is equivalent to the 

I The complement of graph G is G; ( G==G). 
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number of registers. In fact the minimum number of cliques in G C is equivalent 
to the minimum number of colors (or independent sets which cover the graph) in 
GV • These two algorithms are hence complementary. The clique partitioning 
approach was fast presented in Facet[6] . It was shown in [9] that larger prob
lems could be solved faster than using the interval graphs. 

In the presence of conditional code there may be more than one edge used to 
represent a variable's lifetime. For example a variable defined before a branch 
on conditional code, but whose last use is at different csteps inside each branch. 
Thus the graph is no longer an interval graph and one cannot minimize registers 
in general. REAL[lO] heuristically extended the left edge algorithm for condi
tional resource sharing register allocation. However in[9] specific types of con
ditional code that formed chordal graphs (of which interval graphs are a subset), 
were identified thus showing that one could for some cases minimize the number 
of registers in the presence of conditionals. Minimizing registers in loops, where 
variable lifetimes are defined on a circle, was also solved by using an arc color
ing algorithm in[2] . 

Functional unit allocation is complicated by the fact that the mapping of 
operations to type of functional units may be a one to many mapping. In other 
words a selection of types of functional units for each operation must be per
formed. Many synthesis systems reduce this complexity to a one to one map
ping, by preselecting the types of functional units, and therefore do not simul
taneously select functional units when performing allocation. Facet[6] performs 
functional unit allocation using the clique partitioning algorithm. The user pro
vides a scheduled DAG and Facet solves each allocation task, including register, 
functional unit and interconnect allocation, independently using a clique parti
tioning heuristic algorithm. 

MIMOLA[ll] uses a integer linear programming model (IP), with branch 
and bound solver, to obtain the number of functional units required for a fixed 
schedule. However it could not apply this IP to bind operations to functional 
units due to its large model size. 

The problem of bus allocation with a fixed schedule is also very similar to 
register and functional unit allocation. The number of data transfers per cstep 
are used to calculate the number of busses. If one wants to allocated all general 
busses (multiplexors and busses) there is a problem with using global data 
broadcasts. A global data broadcast is a transfer of one data value from one 
source to more than one destination. If one counts the number of distinct 
sources (accounting for a global data broadcast as one transfer) then this will not 
account for extra multiplexors which may be required at the inputs of functional 
units. On the other hand if one counts the data broadcast by the number of desti
nations then one may overestimate the number of busses. In most synthesis 
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systems it is assumed that the extra multiplexors required will be substituted 
later in the design process, and the number of sources for data transfers is 
counted, Interconnect optimization with a fIxed schedule and a fIxed number of 
functional units, [12] for register-transfer fIle architectures with separate read 
and write clock phases was examined using a simulated annealing approach. 

2.2.1 SOLVING TWO OR MORE SUBTASKS SIMULTANEOUSLY 

Scheduling and functional unit allocation were the first two most common 
subtasks to be considered simultaneously. Previous research[13] for scheduling 
multiprocessor systems such as list scheduling[14] has had a large impact on the 
architectural synthesis application. We will use this application to introduce and 
define the problem. A brief overview the architectural synthesis applications 
will then be performed. This scheduling and functional unit allocation problem 
is similar to the precedence constrained scheduling problem formally defined in 
[13] as: 

" A set T of 'tasks' (each assumed to have 'length' 1), a partial order < 
• on T, a number of 'processors' and an overall 'deadline' DfZ+. 

Is there a 'schedule' (J:T-t{O,1, .. ,D) such that, for each iE{O,I, ... ,D}, 
I{ tET : (J(t) = i }I ~ m, and such that, whenever t <. t', then (J(t) < 
(J(t')?" 

This problem was proved [15] to be NP-complete. The precedence con
strained scheduling problem for DAGs with an intree structure [16] were shown 
to have a polynomial time solution and outtree examples were shown to be 
NP-complete. This research was the start of a technique called list schedul
ing[14] which has since been refined for architectural synthesis, such as[17, 18] . 
An example of an intree DAG is matrix multiplication, where an intree structure 
has its leaves representing multiplication operations and the rest of the vertices 
of the tree additions. However with a restricted number of functional units the 
problem of scheduling this computation is more optimally handled using a mul
tiplier accumulator DAG. 

The partial order of the quoted precedence constraint scheduling problem 
represents a data transfer in the architectural synthesis model. The partial orders 
can be also represented by arcs in a directed acyclic graph representation of the 
set of tasks. The extensions to the formal scheduling problem for architectural 
synthesis include : limited mapping of tasks to processors; timing constraints; 
and complex task operation such as multicycled or pipelined processors. 
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Research in mapping algorithms onto multiprocessor structures also exam
ines the precedence constrained scheduling problem[13] . For an infinite number 
of processors one can schedule a DAG to minimize the makespan or ex.ecution 
time of the algorithm using CPM. In multiprocessor applications it is assumed 
that each processing node of the DAG requires negligible time compared to the 
time for communication between processors. Therefore the problem in this 
research area is to minimize the execution time, where execution time is 
modeled as a function of the number of communication delays required to per
form the algorithm[19] . Other research has shown that if we limit our architec
ture to two modules (and ignoring the communication delay) then given any 
DAG we can calculate the minimum execution time[20] . This problem maps 
into a matching problem in a graph which is the complement of the DAG. The 
matching problem is to maximize IMI, where M c E of a graph, G=(V,E), such 
that each vertex is incident to at most one edge eM. An example shown in fig
ure 2.4 illustrates a matching, IMI =2, thus providing an optimal schedule of 3 
control steps for a 2-processor implementation of the five code operations. In 
fact a valid schedule could also be obtained using the matching algorithm. 

If we increase the number of modules beyond 2 the problem is again 
NP-complete, since we are then looking for a restricted set of cliques of size less 
than or equal to the number of modules (>2). It is however interesting to look at 
this application since it illustrates the limitations of purely graph theoretical 
approaches to solving complex problems. For example as new complex con
straints arise during the design cycle using purely graph theoretical approaches 
may not be viable due to the difficulty in adjusting these algorithms to the new 
constraints. We will now briefly review previous research that tries to simul
taneously schedule and solve functional allocation tasks. 

(a) (b) (c) 

Figure 2.4. Illustration of restricted optimal scheduling for two modules. 
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Variations of list scheduling techniques are very popular in architectural 
synthesis as well as multiprocessor compiler design[21] . In general one places 
an upper bound on or fixes the number of functional units and then schedules 
operations in a prioritized order. The priority is set by the (a1ap - asap) value, 
where a smaller value has a larger priority. Operations are placed in a cstep 
based upon this priority until all functional units are exhausted. Then operations 
are placed in the next csteps in the same manner. HAL[18] uses an iterative 
refinement heuristic algorithm based on force directed list scheduling to perform 
scheduling and functional unit allocation. Recently extensions to provide 
heuristics to minimize registers and interconnect have been incorporated. The 
number of parallel data transfers, using transfers with distinct sources counting 
as one transfer, were used to heuristically approximate the number of busses. 
However the exact relationship to number of busses was not defined. 

The mathematical approaches to simultaneously solving more than one sub
task of the architectural synthesis problem will be outlined now. In these exam
ples the scheduling was simultaneously solved with more than one subtask. 
However no previous research to our knowledge has tried to simultaneously 
schedule and allocate busses, only estimates of busses are used to guide the 
scheduling task. These examples show how the previously studied independent 
subtasks, such as register allocation for a fixed schedule, now become very diffi
cult to solve simultaneously with the scheduling subtask. 

A mixed-integer linear programming (MILP) model in [22] , solves simul
taneous scheduling, functional unit and register allocation using a MILP formu
lation. In addition scheduling is done in real time and both registers and func
tional units are selected from a library. A nonlinear model was first formed and 
then linearized by the addition of binary variables. Unfortunately only very 
small examples could be solved due to the size of the model and the inefficien
cies of the branch and bound technique. For example an input algorithm with 4 
code operations required 87 variables, of which 46 had to be integers. 

One of the first IP models for resource constrained scheduling was 
presented in [23] . This same model was recently used in a two step methodol
ogy in[24] . The IP formulation was solved using a branch and bound algorithm 
to produce a schedule that minimizes the number of functional units in one step 
and the sum of the lifetimes of the variables of the DAG (which heuristically 
minimizes the execution time and in some instances the number of registers) in 
the second step. Figure 2.5 shows an example where this heuristic fails to 
minimize the number of registers. Very fast execution times were obtained most 
likely due to the improved computer technologies available today as compared 
to 20 years ago. More importantly by using this two step methodology bounds 
are kept small by incrementally moving across the design space. However the 



www.manaraa.com

54 

bounding argument (which sets the previously solved number of functional units 
as an upper bound for the present optimization with a larger execution time pos
sible) does not necessarily hold in all cases. For example very often as the exe
cution time (or number of control steps) is increased the number of adders may 
increase at the added benefit of decreasing a more expensive functional unit such 
as a multiplier. These tight bounds are very important for solving any IP and in 
particular for branch and bound techniques (they greatly improve the perfor
mance). The model was later extended for functional pipelining in[25] and a 
heuristic partitioning strategy to decrease the size of the input algorithm, how
ever register allocation still was not incorporated. 

Yy 
(a) (b) 

Figure 2.5. An example where sum of the lifetimes of the variables in the DAG 
does not decrease the number of registers but favors minimum execution 
time. In (a) Te=4 (minimum), 4 registers, sum = 7 and in (b) Te=5, 3 regis
ters, sum = 8 are required. 

A simulated annealing technique presented in [26] solves simultaneous 
scheduling, functional unit allocation, and register minimization. The fonnula
tion includes a calculated number of registers. and an estimate of interconnect in 
its cost function. Since the cost functions are used to evaluate two dimensional 
placements (or fixed schedule and functional unit allocation), the number of 
registers could be calculated using the left edge algorithm. The number of paral
lel data transfers was used as a heuristic estimate of the number of busses as 
defined in HAL, however the relationship was not defined. Another part of the 
cost function was called links, which tried to estimate the number of bus drivers 
or multiplexor inputs required. Both fast simple and slower more accurate cost 
functions are used at different stages of the annealing to improve the efficiency 
of the annealing since many solutions are searched. Running times were 
achieved comparable to heuristic techniques. However the rate of convergence 
to a global optimum[27] is exponential. It was stated that new constraints could 
be added by changes to the cost functions. 

A graph theory approach to the simultaneous scheduling and resource 
(modules and registers) minimization problem has been examined by[28] . A 
two dimensional placement of the data flow graph where makespan (or 
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execution time), graph height (number of modules), and modified cutwidth 
measurement (estimated number of registers) were defined was used to represent 
the scheduling problem. The problem is that the cutwidth which can be solved 
easily includes all edges in the graph and we only need the edges representing 
the variable lifetimes. Thus we need only consider the longest outdegree arc of 
each node to represent the lifetime of the variable. This is why a heuristic was 
needed to solve the problem, since minimizing the lifetime defining edge (max
imum length of all edges incident to a node) is NP-complete. A heuristic was 
used to solve this multiprocessor makespan scheduling problem. 

Interface constraints are very important for architectural synthesizers, even 
though few synthesizers[29-31) can handle these simultaneously with allocation 
subtasks. Not only are these important for supporting interfaces to external 
environments but they are also necessary for handling local application specific 
constraints within the synthesized architecture itself. For example timing con
straints are required to model functional pipelining or possibly for multicycled 
operations. The first synthesizer to consider timing constraints was Elf[32) 
where a timing constraint for a group of operations was specified. This con
straint was generally a minimum or maximum execution time to be met. More 
recently the Carnegie Mellon University synthesis effort has updated the CSTEP 
scheduler to incorporate minimum and maximum timing [33) constraints. These 
constraints can be placed between any pair of operations in the algorithm. The 
list scheduler uses priority values for operations to decide if they must be placed 
in a certain control step. Timing constraints are checked and if a constraint is 
about to be violated by an operation not being placed in a control step then the 
priority value for this operation is modified to prevent the illegal assignment 
from being made. 

Research at Stanford University [34,35) has examined timing constraints 
for high level scheduling and logic synthesis. They identify a fixed timing con
straint and a unknown unbounded timing constraint. It is assumed that module 
binding and hardware allocation has already been done, and an iterative algo
rithm for relative scheduling is presented. The feasibility of timing constraints is 
defined and an algorithm is also presented. 

Timing constraints and their effects on loops and conditional codes [ 36) for 
a logic synthesis environment has been investigated. Asynchronous circuit syn
thesis in[37) or [38) has also been researched but no datapath is synthesized. 
Design representation in[33) has researched the use of charts to partition syn
chronous from asynchronous circuitry and perform partial binding of hardware. 

In summary we have briefly discussed the different (locally optimal) 
approaches to state of the art architectural synthesis. The optimization of 
independent subtasks (of architectural synthesis) was shown to be limited for 
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certain cases where the graph (obtained from the scheduled DAG) had a particu
lar structure. It was also shown to be very difficult to extend this approach using 
graph theory for simultaneous solutions of more than one subtask. The previous 
integer programming approaches either were too large, and could not be solved, 
or were formulated to solve only a small part of architectural synthesis. Because 
of these complexities and the fact that architectural synthesis is most likely 
NP-hard, many researchers have turned to heuristics. In the next section we will 
discuss the recent successes in integer programming research. In particular this 
research involves the study of polyhedral characteristics and their use in the 
solution of large scale integer programming problems. Secondly we will show 
that unlike graph theoretical techniques even constraints with no apparent struc
ture can often be solved using these techniques. 

2.3 INTRODUCTION TO INTEGER PROGRAMMING 

General integer programming (IP) applications and solution techniques are 
briefly reviewed in this section. The general formulation techniques for IP, the 
state of the art solutions of general IP problems, including classical enumerative 
and heuristic approaches (ie. simulated annealing) and recent successes in 
polyhedral approaches to solving partially structured IPs are outlined. (The 
notation for a graph is G=(V,E), where V is the set of vertices and E is the set of 
edges). 

Since many problems from a wide range of applications can be formulated 
as an IP problem, there is a great deal of interest in trying to efficiently solve 
integer programming problems. Two of the most important steps in integer pro
gramming are preprocessing and model formulation. Both the amount of 
preprocessing that can be done and the formulation of the model has a great 
impact on the final IP solution efficiency and accuracy. We will first look at one 
of the simplest models, the assignment problem, that has many applications. A 
simple method for formulating constraints that can be represented as logical 
inferences is discussed next, followed by the definition of disjunctive con
straints. 

The assignment problem is one of the easiest models to formulate. The 
variables of the model are binary and each represents the mapping of j elements 
to k elements. For example figure 2.6a) illustrates a possible mapping choice, 
where the variables are the edges of the graph, ej,k' If ej,k is 1, in the solution, 
then the assignment of j to k is optimal. Otherwise, if the value is 0, there is no 
assignment produced by the solution. Although we have used a bipartite graph 
2 for illustration this type of assignment or matching is not restricted to these 
types of graphs alone. 

2 A bipartite graph is a graph with no odd cycle. It can always be partitioned into two 
groups X and Y (or j,k in figure 2.6). 
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k j k 

2 
(a) (b) 

Figure 2.6. An assignment problem illustrated by a bipartite graph (G=(V,E» 
with two partitions j and k. A solution, M c E is shown in bold in (b). 

A perfect matching problem is a set M c E such that each node is incident 
to exactly one edge of M. The binary variables are:Xe=l if efM or xe=O if e is 

not a member of M. Thus we wish to solve the following optimization problem, 
where O(u) is the set of edges incident to vertex u. 

Max ex 
L xe=l. 'ltuEV, xE{O,I} 

e E O(u) 

An example of a matching problem is scheduling tasks of unit duration on a 
uniprocessor where there are K tasks and J possible control steps during which a 
task can be performed by the uniprocessor. In this example there is no pre
cedence relationship between the tasks or in other words the tasks are all 
independent. 

The following logic is often very useful in the formulation of an IP model. 
A representation of logical inferences by mathematical linear inequalities has 
been examined by [39] and[40] . For example the logical expression or inference 
PI => P2 is equivalent to: 1) -, PI v P2[41] and ; 2)I-PI+P2 ~ 1 or PI - P2 $ 0 

[40] , where Pi are binary variables. For example if PI = 1 , then for the inequal

ity to be satisfied, P2 must also be I, which is the same as PI => P2. Another 

example is -, YI V -, Y2 v z which is equivalent to the mathematical inequality: 

YI+Y2-z $ 1. 

Integer variables can also be used to represent disjunctive constraints[27] or 
model the activation or deactivation of a continuous variable. For example, y =1 
=> L $ x $ U and y = 0 => x=O, can be modeled by the inequality Ly $ x $ Uy 
This represents a disjunctive constraint on x or a (de)activation of a continuous 
variable x by a binary variable y. 
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2.3.1 SOLUTION OF UNSTRUCTURED IPs 

We will now look at a few general techniques for solving IPs with no 
apparent structure. These IPs are called unstructured IPs. The first step to solv
ing an IP is to transform the IP into a relaxed linear program (LP) and solve the 
LP. We transfonn an IP into a relaxed LP by removing the integrality con
straints on the variables and allowing them to be solved as real positive 
numbers. For example we can replace xeE{O,l} with l~e~' If we obtain an 

all integral solution then we have found an optimal solution to our problem. 
Proof that the solution is globally optimal comes from the duality theory of 
LPs[27] because we are solving the IP as an LP. In our LP solution if one or 
more variables are not integral then we have to look for other procedures to 
solve for the integral variables. This section will address this problem. We will 
assume that we are solving for binary variables (since any integer variable can 
be represented by a sum of binary variables). 

We will first define some IP terms commonly used. There exists a bounded 
polyhedron for any rational bounded system of linear inequalities. Figure 2.7a) 
gives an example of a polyhedron defined by its constraints, Ax ::; b. We will 
call the convex hull of integer vectors an integral polyhedron. This is also illus
trated in figure 2.7b), where the linear inequalities (now called facets) intersect 
at integer values (represented by the dots). These facets are of dimension one 
less than the dimension of the polyhedron. It has been provn that for any 
bounded system of rational linear inequalities there exists an integral 
polyhedron, and in fact the facets are linear combinations of the inequalities 
defining the polyhedron. Unfortunately for most problems we do not know how 
to form these linear combinations or in other words we do not know what the 
facets look like. Furthermore even if we did there may be an exponential 
number of them. A final term to define is a cut. A cut is a valid linear inequal
ity that cuts away fractional values from the existing linear programming frac
tional solution. For example in figure 2.7c) the lines represent cuts. 

General IPs may be difficult to solve [27] due to 1) size of the formulation, 
2) weakness of bounds, and 3) speed of the algorithm. For example in 1) the 
number of variables or constraints may be very large, in 2) the difference of the 
lower bound and optimal solution of a variables may be great, or in 3) the algo
rithm for solving the problem may be very slow. Recent success in solving IPs 
have shown that (in addition to preprocessing) by tightening constraints, or more 
effectively by using facets,[27] one can dramatically improve the efficiency of 
solving IPs. We say that one constraint, Ox:50o, is tighter, dominates, or is 

stronger than the other constraint, l;x::;~o, if {xER I ox:500} C {xER Il;x::;~o}, 
where xER, R is the set of real values. In other words let the polyhedron 
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(a) (b) (c) 
Figure 2.7. (a) illustrates a bounded polyhedron, (b) shows the corresponding 

integral polyhedron, and (c) identifies possible cuts, on the polyhedron of 
(a). 

generated by the first set of constraints be pI = {xeR 1&:56o} and p2 = 

{x eR 11;x:5~o}, for the second set of constraints, then pIc p2. One way to show 

this is to find a fractional point where xeP InP2, therefore pI*p2, and show 
that pI=,p2. The efficiency of solving the IP is improved due to the fact that 
tighter models have a smaller set of feasible solutions which must be searched. 
Branch and bound algorithms can be used to solve IPs in practical times if addi
tionally the model has a small number of variables and tight bounds are known. 
The most well known general solution techniques for integer programming are 
the enumerative techniques such as branch and bound or heuristic variations. 
We will first review one of the oldest techniques for solving IPs, called 
Gomory's cutting planes algorithm. 

Gomory's cutting planes is more interesting from a theoretical point of view 
than from a practical point of view. Generally Gomory was able to prove that 
after a finite number of cuts on any bounded polyhedron P, an integral solution 
can be obtained. He found a general method for obtaining these cuts using the 
simplex tableau of the LP solution. Unfortunately a very large number of cuts 
must be generated before an integral solution is found and few researchers use 
this technique on practical IPs because it takes too long. 

The branch and bound method, or variation of it, may be used for a small 
number of variables «200). However it is possible that even for small prob
lems the solution may not converge due to the shape of the polyhedron. The 
bound on the objective function may also be very bad, for example the distance 
between X· and X. The objective of the branch and bound technique is to create 
new LPs by bounding each variable towards integral values. The tree formed, 
by branching on a variable x~ r X· 1 and x:5 LX· J, is expanded only on nodes 
where the objective function is more optimum. From experience it has been 
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found that an integral solution may be found quite early yet to finish the algo
rithm and therefore prove it is a global optimum takes a very large amount of 
time. Nevertheless it has been widely used for many small problems. Commer
cial software uses branch and bound techniques and can generally handle up to 
200 integer variables[42] . 

There exist many heuristic techniques for solving IPs such as greedy algo
rithms, interchange heuristics, simulated annealing, and others [27] . These tech
niques tradeoff optimality for efficiency. Tremendous success in solving many 
engineering problems with simulated annealing has been achieved, even though 
the convergence to a global optimum is exponential. Since combinatorial optimi
zation problems have many local optima, some heuristic approaches, such as the 
greedy or interchange algorithm, are often run with random starting points. 
Simulated annealing is a different approach to avoiding local optima, by allow
ing the objective value to decrease only occasionally (for a minimization prob
lem), to avoid getting stuck at a shallow local optimum and thus escaping 
towards another neighborhood with a smaller objective value. A geometry of 
numbers approach [43] to solve particular IP's that cannot be solved using 
branch and bound has been researched. Generally IP's with not necessarily a 
large number of variables but those which exhibit a long needle-like polyhedron 
were solved using geometrical transformation. Using a quadratic potential func
tion projected on a ellipsoid the recent work of Karmarkar[ 44] has shown that 
large sized integer problems known as the satisfiability problems can be solved. 
However if an objective function is required only a locally optimal solution is 
possible and there exists no guarantee of finding a solution. Thus this approach 
seems to be directed towards a problem characterized by a small number of 
integral optimal solutions. 

2.3.2 POLYHEDRAL APPROACHES TO SOLVING STRUCTURED IPs 

In general solving an IP problem is NP hard[13] . However, analogous to 
special graphs in graph theory, there exist special techniques for solving some 
IPs. Thus all IPs are not equivalent in difficulty in all respects. For example to 
solve a node packing IP problem on a graph which is claw-free (ie. 3 no K1.3 3) 

requires only polynomial time, using Minty's[45] algorithm. This is analogous 
to the graph theory approaches where polynomial algorithms are known to exist 
if the graph at hand is of a particular structure (ie. interval graph for polynomial 
time algorithms that perform node coloring[7] ). We say that these IPs have 
structure. Additionally IPs where some constraint has this property are said to 

3 Kx,y is a complete bipartite graph with partition x,y. 
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have some structure. In IP we can often obtain good bounds on a particular 
problem and often solve for integer variables using this structure, even when no 
known graph theoretical algorithms, heuristics or formulations may exist. But 
how can we find this structure? We can often do this through proper model for
mulation. 

The research focus over the past 25 years in IP has been to study polyhedra 
characteristics of a problem and thus define structure which may help in its solu
tion. This was motivated by the desire to obtain tight formulations of the prob
lems rather than adhoc models, since IPs have exhibited extremely erratic per
formance. A systematic way to obtain these formulations is to analyze facets. 
Unfortunately there exists no formal method for obtaining facets of a given IP 
and even if we could find a method to generate all facets, most likely we 
couldn't solve the LP because there may be an extremely large number of them 
(possibly exponential). Balas and Padberg[46] have argued that its very useful 
to find facets or approximation of facets because only a few define optimal 
points. Also it is known that if one used a branch and bound technique after 
extracting some facets, the algorithm would generate fewer live nodes [47] and 
terminate faster. This is mainly due to the better bound obtained from the use of 
facets. Thus by mapping a problem or subsets of a problem into a well studied 
class of problems, such as node packing, whose facets are partially characterized 
one may be able to improve the bounds of the problem and solve for integer 
variables more efficiently. 

Recent research has proven how important facets are. The tremendous suc
cess of the use of facetial characteristics is demonstrated with the traveling sales
man problem [48] and large sparse unstructured IPs solved by using facets of 
subproblems in[49] etal. Further research [48,49] has also shown how it is 
highly advantageous to add facets to the LP until no new ones can be found even 
before you start to branch and bound. 

State of the art solutions of unstructured IP have been researched by [49] 
using a combination of preprocessing, cutting planes (using knapsack facets of 
underlying polytopes), and branch and bound tecpniques to solve sparse 0-1 
unstructured IPs of over 2000 variables in reasonable computation times (less 
than 1 cpu hour). The cutting planes which were facets of the underlying 
polytope (knapsack inequalities) were extremely useful and successful for exact 
solution of their class of problems. Their system was completely automatic, and 
represents state of the art for solving unstructured IPs. When a cut cannot be 
found a variable is selected to branch on. The definition and characterization of 
knapsack inequalities is given later in section 2.5. 



www.manaraa.com

62 

In 1980, Grotschel[50] demonstrated optimal solution of (over 7,000 integer 
variable) TSPs in 30 cpu sec to 2 cpu min to show the usefulness of the theoreti
cal research in polyhedral charncteristics. In all cases the problems could not be 
solved using existing branch and bound techniques, thus demonstrating the 
importance of polyhedral combinatorics in solving large scale optimization 
proljlems. In 1980 Padberg[51] solved for 50,000 integer variables of the TSP 
problem completely automatic to within 0.25% optimality in 30 minutes using 
automatically generated facets. Unfortunately the number of applications which 
can be modeled as a traveling salesman problem is not proportional to the large 
amount of research that this problem has generated. Conversely there are other 
problems, such as finding the maximum weighted directed cycle in a graph that 
have a large number of applications, but generated little research. This is also 
partially true for the node packing problem in a smaller sense as we shall see in 
section 2.4. 

2.4 THE NODE PACKING PROBLEM 

There exists a great deal of interest in the node packing problem because of 
a) the large number of practical applications and b) the stronger structural pro
perties than the general integer programming problem[52] . The node packing 
problem has also been called vertex packing and the stable set problem. It is 
also related to other problems in optimization such as the set covering, set pack
ing, anticliques, independent sets, and node covering, [52,53) which we will not 
cover in this text. We will first illustrate the relationship between integer pro
gramming, graph theory, and node packing, using a simple completely struc
tured problem (that of maximum matching). Secondly we will formally define 
the problem and then proceed to define the known facets of this problem. 

Integer programming and graph theory have many areas of research which 
overlap. For example figure 2.8a) illustrates a perfect matching problem. Each 
edge must be assigned a 0 or 1 value to maximize the sum of all edges with the 
restriction that each vertex is incident to at most one edge with a value 1. Alter
natively we can use the Hungarian Method or Kuhn Munkres[54] algorithm to 
solve for a maximum matching in polynomial time. Alternatively one can solve 
an IP where constraints correspond to integral facets. In the latter method, we 
can solve the IP as an LP and be guaranteed to always obtain a solution with 
integer variables. The second constraint given below can be automatically gen
erated as needed for a particular problem by at most 2n-l min cut problems on 
the graph. In other words instead of generating this constraint for all odd sets of 
vertices we can solve the LP and automatically generate facets to cut away the 
fractional values and solve for integer variables using the relaxed LP. The com
plete model for weighted perfect matching is given below, where OeS) is the set 
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The vertex representation of this problem (which we will define in the next 
section as node packing) is shown in figure 2.8b) where each edge is now a ver
tex (variable) and edges of this new graph represent adjacent vertices of the 
matching graph in (a). The graph in figure 2.8b) is a line graph obtained from 
(a), and it is known that the solution of this problem (node packing) on a line 
graph[27] can be solved in polynomial time. This example briefly illustrates the 
relationship between graph theory and integer programming. However this rela
tionship is not true in all cases. For example there exist some problems for 
which known polynomial algorithms exist (ie. it is well solved) however the 
associated polyhedron is nontrivial. An example of this is the to find the edge in 
a node weighted graph which has the maximum sum of its two incident nodes 
[46] . 

j 

1 

2 

3 

k 

1 

2 

3 

j 123 

(a) (b) 
Figure 2.8. The matching problem represented by edge variables in (a) and ver

tex variables in (b). In the former case one assigns 0 or 1 to edges and in the 
later case one must solve a node packing problem, by assigning 0 or 1 to 
vertices. 

Like the traveling salesman problem characteristics of the integral facets are 
partially known[27] for the node packing problem. This problem is more for
mally stated below in two forms. One form is the graph theoretical view and the 
second is the mathematical linear system of equations view. 
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1. In graph theoretical fonn: Given a graph G =(V.E). maximize I,cuxu. 

where Cu is a cost value. such that 

Xu+Xv::;:; 1, \t(u,v) E E 

xu~ 0, \tu E V. 

2. In linear systems of equations fonn: 

max cTx, Ax::;:; e 
laj~' \t j EN ={1, ... ,nj 

u 

where A is a m by n matrix (m rows, n columns. with entries of 0 and 1. two 
l's per row which identify the two vertices which fonn an edge of the graph 
G). c is an arbitrary n-vector. and eT = (1 •... 1) is a unit m-vector[52]. 

If all variable solutions are integral then a globally optimal solution to the 
problem has been found and we are done. A property unique to the node pack
ing problem is that if not all variables solutions are integral. the variables that 
are integral remain integral[27] in the optimum solution. Therefore the problem 
can be decomposed into a smaller problem to solve. However it is also known 
that this node packing fonnulation with node edge incidence constraints. gen
erates very poor bounds[47] . Furthennore studies which attempt to use this pro
perty to solve the problem have found that in most cases few integer variables 
are attained[55] . We will discuss the node packing problem using the graph 
theoretical fonnulation. 

Finding all integral facets for a particular node packing problem is 
NP-complete. This problem is known as the stable set polytope (SSP) problem. 
using graph theoretical tenninology. Nevertheless only integral facets over the 
region of the minimum objective function are required to obtain integral solu
tions. We will now define some of these facets. 

One known integral facet for the node packing problem is given by 
Lxu::;:;l,for all K cliques. where a clique (or maximal complete subgraph) is 

uEf( 

a subset of nodes K for which there exists an edge in the graph for every pair of 
nodes in K. There are other facets such as an odd cycle. however we will dis
cuss these since they are not necessary for the IP model to be presented in sec
tion 2.7. 
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Scheduling nodes of a DAG with no resource constraints is an example of a 
problem which can be transformed into a node packing problem. Assume that 
each node of the DAG refers to a task which must be assigned to a time. It is 
very important to understand this model since it is the basis of the remaining 
chapter. 

Assume we have the following variables Xj,k' where nodes of the DAG are 

represented by k and the control steps (units of time) that one must assign these 
nodes to are represented by j. Assume that all tasks are of unit duration (or 
require one cstep to complete). Thus if xj,k=1 then task k is assigned to (or 

scheduled at) cstep j. Equation (1) ensures that each task will be assigned to one 
control step. 

Dj,k = 1 , 'Vk. (1) 
j 

Inequality (2) , called the precedence constraint, prevents a task, k\ from being 

scheduled after task k2 whenever there is a precedence relationship between 

these two tasks such that k\ <" k2. In other words task k\ must be completed 

before task k2 can be started. For example task k\ produces data which must be 

used by task k2• In a DAG representation, the k; 'Vi are the vertices of the graph, 

and an arc is defined using k\ <" kz to mean an arc from node k\ to node kz in 

theDAG. 

(2) 

In order to write this IP problem in the exact form of Ax <= 1, A(O,I) 
matrix (a node packing problem, where A has at most two l's per row) the 
model becomes: 

Max l:Dj,k 
j k 

Xjt,k+xh,k :5; 1 , 'Vh,jz,k 

Xh,k, +Xj,,k,:5; I, 'V h:5;h,k\ <" k2 

(1 ') 

(2') 

The flrst difference is that equation (1) now becomes an inequality,:5;, instead of 
an equation, =, with the current cost formulation. Either equation (1) or inequal
ity (I') are equivalent in terms of the set of integer feasible solutions. However 
they are not equivalent in terms of fractional space as we shall see. 
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More specifically consider an instance of this scheduling problem for a 
DAG with two tasks. The DAG has tasks a and b, where a<-b represents an 
arc from a to b in the DAG and J=5 is the total number of csteps to be con
sidered. Constraints (1') and (2') are used to generate the following A matrix 
where Ax~l and x T =[XI,a.x2,a.x3,a.x4,a.x2,b.x3,b.x4,b.xS,b]: 

row # inequality # 

A= 11000000 (1.1) (1 ') 
10100000 (1.1) 
10010000 (1.1) 
01100000 (1.1) 
01010000 (1.1) 
00110000 (1.1) 
00001100 (1.2) 

01001000 (2.1) (2') 
00101000 (2.2) 
00100100 (2.3) 
00011000 (2.4) 
00010100 (2.5) 

This model, Ax~1, can be visualized as the placement of tasks into control 
steps. The node packing graph for this problem is shown in figure 2.9. We will 
now describe how this graph is formed. First each variable of the IP model is 
represented by a node in the node packing graph. Each row generated using ine
quality (I') and (2') forms an edge of the node packing graph between a node 
Xj,a and Xj,b' In figure 2.9b) we note that the four nodes, x3,a.x4,a.x2,b.x3,b, 

shown in bold, form a clique, or integral facet. The edges of this clique were 
formed by row numbers (1.6),(1.7),(2.2),(2.3),(2.4), and (2.5), of matrix A. This 
clique can be represented by the following inequality: X3,a+X4,a+X2,b+X3,b~1. 

Therefore this inequality can be added to the A matrix. When we continue in 
this manner and then remove the redundant constraints we obtain the new A' 
matrix shown below. 

row # inequality # 

A'= 11110000 (1.1) (1") 
00001111 (1.2) 
01111000 (2.1) (2") 
o 0 1 1 1 1 0 0 (2.2) 
o 0 0 1 1 1 1 0 (2.3) 

This system of linear inequalities, A'x:S;1, generates a smaller search space than 
Ax:S;1. We can generalize this clique facet (precedence constraint) and represent 



www.manaraa.com

67 

the new system of inequalities as: 

Dj,k = 1, \:;fk (1 ") 
j 

A different formulation of the I-D precedence constraint formulation was 
presented in [23,24] as L U)xj.kl - L U)xj,k2 :S;--C1, \:;fk l <-k2. We 

jcR(kil jcR(k2l 

will call this constraint (2*). Even though the set of integer feasible solutions 
are the same, formulation (2") is tighter (or forms a smaller search space) than 
(2*) and the proof is given in[31] . Thus improvements in IP solution efficiency 
and better bounds on variables are expected with (2") since it is a tighter formu
lation[27] . On further analysis of the graph in figure 2.9, one can see that this 
graph is strictly characterized by cliques completely generated by (1") and (2"). 
Thus G is a perfect graph (by definition) and its integral polytope is completely 
characterized by inequalities (1' ') and (2' '). 

Figure 2.9. Node packing graph for 2 tasks (a < -b), showing in bold a clique 
facet for j=2 in a) and j=3 in b) of inequality (2"). R(a)=\1,2,3,4} and 
R(b)=\2,3,4,5}. 

2.5 THE KNAPSACK PROBLEM AND OTHER TIGHTENING 
TECHNIQUES 

In many IPs some constraints may fall into the category of knapsack ine
qualities. By generating known facets of this underlying (knapsack) polytope, 
one can often tighten the larger polytope represented by all inequalities. This 
has been very successful as demonstrated by the award winning paper in(49) . 
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The definition and facet characterization of the knapsack problem will be given 
in this section. 

The knapsack problem is to minimize ex over the polytope P, where 

P={xl Lajxj~b,O<.0j~l},O~aj~b,\lj£N 
jfN 

and al2!a22! ... 2!an . Let X be an integer vector in P. Then we can represent 

this fact by saying that the set S={j Ixrl} is independent. Now let C be a 

minimal dependent set. In other words we say that a x vector is dependent if it is 
not in P. The dependent set C is minimal if and only if C \ {i} is independent V 
i E C. The following inequality is valid for PI: ~:Xj~IC 1-1. Given C, we 

jeC 

can define E(C)= C u{k:ak2!aj,'\IjEC}. Now the following inequality: 

L xj~IC 1-1. is a facet of PI if and only if at least one of the four conditions 
jfE(C) 

are true: 
[1] C =N; 
[2] E(C) = N and (i) C\{h ,h}u{1} is independent; 

[3] C = E(C) and (ii) C\{jdU{p},p=min{jlj£N\E(C)} is independent; 

[4] C c E(C) eN and (i) and (ii). 

2.5.1 EXAMPLE: RESOURCE CONSTRAINTS IN SCHEDULING 

Now we will examine an example of the knapsack problem that arises in IP 
formulations for high level synthesis. The example is a formulation of a 
resource constraint, specifically bus allocation constraint. Consider the follow
ing knapsack inequality: 3 D+ + D* + D*l ~ 7, Let the coefficients of Yk 

+ * *1 
be ak where k = +, * or * 1. Consider the following minimal dependent set, C E 

{+1' +2, *, *1}, (Lxc~IC I-i). For example summing the coefficients of the 
keC 

minimal dependent set we get 3+3+ 1 + 1=8 >7 (therefore dependent), and remov
ing anyone of these C \ Ii} ViE C we get 3+3+1=7 or 3+1+1=5 ~ 7(lherefore 
independent). Y +,+Y +2+Y*+Y* 1 ~ 3 We can now prove that the following tighter 

inequality, where kEE(C), is a facet: D++Y*+Y*1 ~ 3 First we prove that: (1) 
+ 

C\ {h,h} U {I} is independent, ie. a++a*1+a*2=3+1+1=5~7 Secondly we 

must prove (2) C\ Ud U (p}lp:min j £N\E(C) is independent, ie. 

a+2+a*1+a*2+a*p=3+1+i+l=6~7 This particular facet of the knapsack 
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inequality will be used in section 2.10 for improving the lower bound on the 
number of busses. Generally if the aj's do vary in magnitude (as they do for the 

EWF ai'S = 1 or 3, and other types of input algorithms with pipelined or multi

cycle operations) these facets are very useful. 

We can also use application-specific information to tighten inequalities. For 
example cut vertices of the DAG can be used in this way. An example of this 
vertex is a task, ksep , which directly precedes and/or is directly preceded by 

«0» all other tasks in a transitivity-reduced DAG. For example consider a 
DAG consisting of vertices a,b,c,d, where a<· b, d <. b <. c <. e, a<· e, d <. c. 
A transitivity reduced DAG would be a<· b <. c <. e, d <. b. Any DAG can be 
transitivity reduced by applying the following rule as many times as necessary to 
a DAG until no further arcs are eliminated: if a <. b <. c, a <. c then delete arc 
a<· c. An example of a tightened inequality will be given next. First assume that 
we sum all variables representing tasks which may be scheduled at one time,j 
and set this less than or equal to 2, since we have only 2 processors (each proces
sor can only execute on task at a time). The following ineqUality does this: 
Xj,k,+Xj,k,+Xj,k,+Xj,k.'5.2. Now let us assume that k2 is a cut vertex of the transi-

tivity reduced DAG. If xj,k2=1 in this inequality then we know that all the other 

tasks cannot also be scheduled at this time because k2 is a cut vertex. Therefore 

it would be valid to say 2Xj,k2'5.2. Furthermore it would be valid to rewrite the 

inequality as Xj,k,+2xj,k2+Xj,k,+Xj,k.'5.2. The new inequality is tighter than the 

original inequality and thus generates a smaller search space. 

2.6 PROBLEM TO BE ADDRESSED 

Now we will identify the two major architectural synthesis problems which 
we present a model for in this chapter. An exact definition for these problems in 
the context of architectural synthesis for DSP systems is given below. Problem 
1 has been called simultaneous scheduling and allocation of functional units. 
registers. and busses. The number of registers and busses are defined for a ran
dom topology where functional unit outputs are connected to a set of busses 
which also connects to inputs of registers. The registers output values on to a 
different a set of busses which has inputs of functional units connected to it. 

PROBLEM 1: Produce a schedule. by mapping each code opera/ion to a 
time (maintaining the partial order anwng operations) that minimizes a 
piecewise linear (area and delay) cost function of the number of functional 
units. registers. busses. and execution time (the total number of csteps 
required to execute the algorithm on the final architecture), 
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Problem 2 has been called simultaneous scheduling, selection and alloca
tion of functional units including chaining of operations. Unlike problem 1 this 
model does select a type of functional unit. This problem is very important in 
order to support architectures for high speed DSP systems. It is well known that 
the delay through two successive adders is less than two times the delay through 
one adder. Thus chaining operations may slightly increase the clock period but 
overall decrease the latency (total number of control steps) of the application 
significantly. 

PROBLEM 2: Produce a schedule, by mapping each code operation to a 
time and a type of functional unit. A number of different functional units 
including those which are chained, multicyc/ed, and pipelined are avail
able. The problem is to optimally schedule and allocate such that area and 
speed requirements are met. 

As discussed in the previous section the basis of both problems is pre
cedence constraint scheduling. Our submodel for solving this subproblem is 
new and we will prove its advantages over previous research in the following 
sections. Advances in computers providing faster and larger spaces for 
mathematical software has also had a great impact on this modeling area. The 
following algorithmic and complex constraints are also supported by the two IP 
models. 

Additional Features to Support for Problems J and 2: The following 
features are to be supported: (1) Interface to analog and asynchronous 
processes, (2) Minimum and maximum timing constraints, (3) Conditional 
Code, (4) Functional Pipelining, and (5) Minimize average execution time 
in presence of interfaces to asynchronous processes. 

Many subtasks of architectural synthesis could not be solved to global 
optimums using previous algorithms, such as minimizing registers in the pres
ence of general conditional code. Thus not only is the larger problem of simul
taneous scheduling and allocation being solved for the first time but many of its 
subproblems can now for the first time be solved optimally by the IP approach 
to be presented. Furthermore as we shall demonstrate it is easy to incorporate 
these above features into our model, whereas it is difficult to make modifications 
to heuristics in previous synthesizers. We will show in section 2.10 that it is 
feasible to find global optimal DSP architectures with these features using our IP 
approach. 
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2.7 IP MODEL FOR PROBLEM 1 

The following section will present the model which is used to solve problem 
1, simultaneous scheduling and allocation, preiously defined in section 2.6. First 
we will define some tenninology and then present the model. The following ter
minology will be used in this section: k = a code operation of the input algo
rithm (previously called a task or node of the DAG). A partial order between kl 

and k2 is represented by kl <- k2 ,or in other words code operation kl produces 

(or outputs) data that is used by code operation k2• The variables of the model 

are Xj,k' When Xj,k = 1, code operation k is assigned to time (cstep) j UEZ, set 

of integers). jz E R(kz) means that asap(kz)~jz~lap(kz) (where 

asap/aiap(kz) is the as soon/late as possible csteps for operation kz ). The vari

able Ii represents the number of functional units of type i. For simplicity we 

will assume that i E op(CzLz) which means that the type of functional unit i 
requires C z csteps to produce output data and can accept new input data every 

L z csteps. For example a single cycle type of functional unit is i EOp( 1,1) and a 

two-cycle pipelined type of functional unit is i Eop(2, 1). 

In general the model consists of 5 inequalities. The operation assignment 
constraint, (1), ensures that each code operation (of the input algorithm) will be 
assigned to one cstep. The precedence constraint, (2), prevents an operation k2 

frqm being scheduled after operation kl whenever there is a partial order 

between these operations such that k2<-k1• The derivation of this inequality 

was presented in section 2.4.1. The only difference is now an operation kl (task) 

may require Ci csteps to execute (not a unit cstep). That is why the summation 

of the first tenn is different. For many cases this inequality represents a facet of 
the precedence scheduling problem[l] . The functional unit constraint, (3). 
ensures that no more than Ij functional units of type i [23.24] will be required in 

the solution. 

L Xj,k = 1, "if k 
jER(k) 

L x).,k,+ L XJz,k2 ~ 1 
j,'~j-(C,-l) j~j2 

j,ER(k,) }zrR(k2) 

"if kl <-k2, jER(k2)n(R(k1)+C 1-1) 

(1) 

(2) 
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jl=j+(L-I) 
L L Xjl.k $,Ij , "iI j, i t: op(C,L) 
kEj jl=j 

jfR(k) 

L( L Xjl,k. + 
k. jISj-(C.-I) 

jlfR(k,,) 

L Xj2,k.- L Xj3,k, 
j2>j j3Sj 

j2fR(k,) j3fR(k,) 
k. <ok, k. <ok, 

L Xj4,k) $, 2 R , "iIj, andfor all 
j4> j-(C.-I) 

j4fR(k.) 

maximal sets of arcs (kn <oke)that cross j 

each with unique heads (kn). 

(3) 

(4) 

L (/n(k»xj,k + L (Out(kl»xjl,k, $, B , "iI j (5) 
k k,fR(jl) 

jfR(k) jl=j-(C,-l) 

The register allocation constraint ensures that there are no more than R vari
ables whose lifetimes overlap at any cstep. A variable lifetime can be 
represented by a (lifetime-defining) edge (k < ok,) between the defining opera-

tion, k, and the operation which last used the variable,k,. However in many 

algorithms each variable may be input to more than one code operation 
(k < oke Ie> 1), thus it is difficult to determine which ke should be the lifetime-

defining edge. Two properties, transitivity and alap analysis, can be used to 
decrease the number of edges we must consider for representing a variable life
time. For example in figure 2. lOa), (e= 1 ,2) tranSItIVIty requires 
(k] <ok2)=}(~ = k,) and in figure 2. lOb) alap analysis requires 

(asap(k2) ~ alap(k j »=>(k2 = k,). This preprocessing can be done very fast 

and is outlined in appendix II. We will now describe how the register allocation 
constraint (4) can ensure no more than R registers are allocated even with multi
ple edges representing a variable's lifetime. The following terminology is used: 
(a) An are, kn < oke (whose head is kn and tail is ke). is said to cross cstep j if and 

only if R(kn )n{O,I, ... ,j) :F. 0 and R(ke )n{j+l,j+2, ... ,Te) :F. 0; (b) e(n) = the 

number of arcs (kn<oke,e ~ 1), with head kn that cross at j (e(n) $, e). For the 

general case where e(n) ~ Pin. constraint (4) is generated, ITe(n) times per n 
estep, for all maximal sets of arcs that cross j such that no two arcs in a set have 
the same head. For example if only one head (ki ) has e multiple arcs 

(ki <okj ,j=1 , ... ,e.) that cross at j (e(i)=e), and the rest of the arcs have unique 
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heads (e(n)=l'v'n:;ti), then (4) is generatede times (once for each kj ). In prac

tise the number of constraints will not be a significant problem, because 1) the 
computation time for IP problems is not highly sensitive to the number of con-

straints [27] and 2) most algorithms will have small values of r;e(n) which 

intersect at the same cstep. The register allocation constraint (4), calculates two 
times the number of cut edges at each cstep, by dividing time and operations into 
four quadrants as shown in figure 2.11. 

Since we are interested in obtaining an exact measure of the number of 
busses of a final architecture, we define the number of parallel data transfers 
(pdt) as the maximum number of data transfers that occur at one time (counting 
transfers with distinct sources as the number of destinations) unlike previ
ous[l8,26] definitions. We constrain each hardware unit (register or functional 
unit) to have only one bus per input, unlike other heuristics which cannot esti
mate additional multiplexors required later in the synthesis process. Data broad
casts can be modeled using fixed timing constraints[56] on all pairs of destina
tion operations and selecting one of the destination operations to contribute to 
the bus count. 

(a) (b) 

Figure 2.10. Reduction of the number of arcs to be considered for representation 
of a lifetime of a variable is illustrated above. 

Figure 2.11. Illustration of the register allocation constraint generated for cstep 
J. This constraint assigns coefficients of +1,-1 to variables according to their 
location in one of four quadrants. The vertical line partitions tails of arcs 
from heads of arcs. The csteps are increasing from top to bottqm. 
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The bus allocation constraint, (5), ensures that at each cstep no more than B 
busses are required to transfer data between functional units and registers. We 
also use the constraint (In(i)+Out(i»li ~ B, 'Vi EOp( 1,1) to decrease the size of 

the search space. The defined number of parallel data transfers is exactly equal 
to the number of busses in an optimal architectural solution 1) for module allo
cation, 2) allocation of at most 2 types of functional units and in other cases. 
For example assume we have three (single cycled) functional units of different 
types (i=3) and all pairs of functional units are scheduled in parallel (but all 3 
functional units are never scheduled at once). The pdt would be calculated as 
(2*2+2=) 6, but (3*2+2=) 8 busses are required since each functional unit must 
have only one bus per input and each functional unit in theory must be able to 
access any output bus. The pdt is exact when not all pairs are scheduled at the 
same time or when all 3 are scheduled at least once in parallel. Nevertheless 
since many DSP algorithms have only two types of functional units and in many 
practical applications the functional units have high utilization, the pdt will often 
be exactly equal to the number of busses for i~3. Proof that an architectural 
solution with B busses, R registers, and Ii functional units of type i (i~2) is 

always guaranteed to exist can be found in [1 , 57] . For the first time this pro
vides us with an exact defined relationship between parallel data transfers and 
the number of busses required in the architecture. 

2.7.1 SOLUTION OF PROBLEM 1 USING IP APPROACH 

Before we can solve the IP model we need to formulate a cost function to be 
minimized or maximized. The most logical formulation in DSP synthesis is to 
minimize the execution time with a constraint on the area or to minimize the 
area with a constraint on the execution time. Alternatively one could set the area 
as a constraint and then minimize the execution time in the first optimization 
phase. Once a minimum execution time is found one then can set this as a con
straint and minmize the area in the second optimization phase. This two phase 
optimization methodology can synthesize very good architectures that not only 
meet but exceed the application performance requirements. We will first discuss 
formulation of different cost functions and then proceed to outline the procedure 
which must be followed in order to solve the IP. 

Piecewise linear area cost functions such as: 
L cJu(i) Ii + c_bus B + cJeg R can be formulated. For example assume 
i 

we have a cost of 10 for the first 5 registers and a cost of 15 for the additional 
registers[26] after the fifth. The right hand side of the register allocation ine
quality, (4), becomes ~2(Rl+R2)' RfB=5 and RfB=o, and part of the cost func-

tion becomes (10 15)(R 1 R2l = c Jeg R. Alternatively the minimization of 
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execution time can be formulated as follows: Minimize Te=L.U-I)xj,k"'J' In 
j 

this case a special node is added to the DAG, such that all other operations must 
precede this node, kj < -kend, \;f i. This operation, kend, is used to determine how 

many csteps it takes to execute the algorithm on the synthesized architecture. 
Thus the following two approaches can be used first to minimize execution time 
given constraint on area, and second to minimize area given constraint on execu
tion time. In the later case the constraint on execution time is formulated by set
ting the as late as possible cstep which the end operation can be assigned to as 
Te + 1. All other operations are assigned as late as possible values accordingly. 
In summary the set of cost formulations (6) and corresponding constraints are 
shown below. 

Minimize L.U-I)Xj,k,nJ 
j 

L. cJu(i) Ij + c_bus B + cJeg R ::; Area 

Minimize L. cJu(i) Ii + c_bus B + cJeg R 

a/ap (kend) = T e+ 1 

(6) 

Before one solves the integer programming problem it is essential to obtain 
lower bounds on all variables. We use inequalities (1), (2) and ()::;xj,k::;1 ,\;f j ,k 

with (3),(4), or (5) and cost functions Ii' R, or B to calculate lower bounds for 

functional units, registers, or busses respectively. Furthermore even upper 
bounds on the cost or other variables should be set if they are known or found 
from a previous search. For example if we have found an architecture with area 
Al and execution time Tl and want to investigate another architecture with exe
cution time T2 > n, then the upper bound on the new area A2 is AI, since we 
are only interested in architectures with smaller area than our current solution. 

2.8 IP MODEL FOR PROBLEM 2 

The IP model for solving problem 2, simultaneous scheduling, and selection 
and allocation of functional units, including chaining of operations will be 
presented next. The following terminology in addition to that used in section 
2.7, will be used in this section to describe the model for problem 2. The vari
ables of the model are Xj 1.,1' When Xj 1.,1 = 1, code operation k is assigned to 

time (cstep) j UEZ, set of integers) and operation k is assigned to functional unit 
type t (tEZ). tzf.T(kz) means that code operation kz can be implemented by 

functional unit type tz • For example a multiplication operation, k, can be imple

mented by t=1 a two-cycle multiplier and t=2 a pipelined multipler, 
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T(k)={l,2} (further details will be provided later in the paper concerning the 
use of t for chained operations). For simplicity we will assume that 
tz e op(Cz,Lz) which means that the type of functional unit tz requires Cz csteps 

to produce output data and can accept new input data every Lz csteps. For 

example a single cycle type of functional unit is teop(1, 1) and a two-cycle pipe
lined type of functional unit is teop(2,1). We use the notation time(kbk2)$. or 
~ or =T to represent (Dj.k2-Dj.k,$. or ~ or =T) the maximum, minimum or 

j j 

fIxed time constraint between the two operations. Note that time(kJ ,k2)$.T is 

equivalent to time(~,kJ)?-T. 

The IP model for solving problem 2 will now be presented. The inequalities 
which comprise the model are shown beside the boxes below. The code opera
tion assignment constraint, (7) , ensures that each code operation of the input 
algorithm will be assigned to one cstep and one type of functional unit. The 
type of functional unit constraint, (8) calculates the number of functional units of 
a particular type to be allocated. 

L L Xj.k,1 = 1, 'Ilk 
IET(k) jrR(k) 
jl=j+(L,-I) 

L 
}I=} 

L Xjl,k"I, $.11" V j,tl 
k, 

I,ET(k.) 

(7) 

(8) 

Next we will discuss the precedence constraints required to model different 
types of functional units. These constraints are more complex than our previous 
model because now an operation may be assigned to more than one type of func
tional unit. Thus depending upon which functional unit it is assigned to, it will 
have different precedence constraints. The general data precedence constraint, 
(9), where kl is a single cycle or multicycle operation or pipelined operation (not 

chained), prevents an operation kJ from being scheduled after operation k2 

whenever kl <ok2 and tl is not a chained type of functional unit. The precedence 

constraint is equivalent to the minimum timing constraint time(kJ ,k2)?C J' 

tleT(kl )· 

L L XM"I,+ (9) 
1,£T(k,) h£R(k,), j-(C,-I)Sj, 

L L Xj,.k,,12 $. 1, 'IIk l <ok2, jeR(k2)n(R(kJ)+CJ-l) 
I-,ET(k,) jzSj 

jzrR(k2) 
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We will now address the inequalities necessary to support chaining of 
operations. Consider a single cycle chained type of functional unit, called an 
adder-adder (aa), composed of two successive additions +] < 0+2' The variables 

which represent selection of the adder-adder and operation scheduling, are XU"I, 

and Xj,+"I" where t]=too1 and t2=too2 represent the first and the second addition 

operations in the adder-adder respectively. The following constraint ensures that 
the adder-adder will execute in one cstep, time(+]'+2)=O V +]<0+2> t]=too]' 

t2=taa2' This (fixed) timing constraint is represented in the IP model as 

time(+]'+2)~O and time(+],+2)::;O V t]=taa]' tz.=too2 along with the following 

inequalities Xjl,+t,laal+ L Xj,+"t~,::;l, Xj,.+z,t ... ,+ L Xj,+"laa,::;l 
j~jl' jf'R(+,) j~jl' j£R(+d 

V it, +1 < 0+2' However each addition operation may also be implemented with 

a one-cycle adder type of functional unit. Therefore the remaining constraints 
are time(kl'+2)~C]. V k 1<0+2. t]*taa ], and time(+],k2)~Cl' 

V +1<ok2, t2*too 2' 

Another example of a chained functional unit, called a multiplier-adder 
(rna), is a multiplication chained with an addition, *]<0+2, tl=t2=t"la (for 

multiplier-adder type), where C r>Ia=2. Thus the following timing constraints are 

used time(*]'+2)~1 V *]<0+2, t]=t2=tr>la' time(*I,k2)~C] V *]<ok2, t2*tr>la 

(this includes tl=tr>la)' and time(kl'+2)~C] V k]<0+2' t]*tr>la or t2'/:·tr>la' The 

lP approach supports chaining of two or more operations to define any type of 
functional unit. Unlike previous research, no preprocessing of operations is 
required in order to simultaneously select chained types of functional units. Par
tial subset of operations can also be mapped into a larger complex operation. 
The fact that we have shown the data precedence constraint to be facet
generating (for a subset of the problem[31] ) and therefore very tight, is impor
tant not only since it forms the basis of our model, but helps to explain why even 
with complex timing constraints we can still practically and efficiently solve 
many IP synthesis problems in very good execution times. Register allocation 
constraints for the new model are obtained by substituting L Xj,k,1 for Xj,k in 

IET(k) 

the constraint (4) of section 2.7. 

2.8.1 SOLUTION OF PROBLEM 2 USING IP APPROACH 

One can support the same cost functions as described in section 2.7.1. 
However in addition one can use the fact that some adders will be chained, thus 
requiring less interconnect than those adders that are not chained. Or perhaps 
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the single adders have a smaller area than the chained adders. Thus one can 
separately formulate a model that counts the number of single adders used and 
the number of chained adders used as shown below. 

Minimize 2area(chainedadder)/QlJI + area(adder)laa2 

L Xj,kadd,l '5, laal 
kndd 

L Xj,kadd,2 - L Xj,kadd.l '5, laa2 
kndd kndd 

Alternatively let us assume that aU the adders had the same area and we multi
plexed both adder inputs of the adder-adder (so that it could be functionally 
equivalent to two separate adders), Then the cost function and additional con
straint would be: 

Minimize area(add)ladd 

L Dj,kadd,atgadd 
knddat 

The same preprocessing is required as discussed in section 2.7.1 before the 
integer programming problem can be solved. In addition to this, operations in 
the application which can not be a certain type (due to types of operations which 
precede or succeed it) are identified and set equal to zero. For example an addi
tion operation which outputs data only to multiplication operations can never be 
assigned to a type aal as previously defined. Therefore we can set 
Xj,add,1 = 0 'i/j£R(add). The execution time and area (with the above excep

tion) can be modeled the same way as in section 2.7. Again lower bounds are 
computed as described in section 2.7 before the IP problem is solved. 

2.9 EXTENSIONS TO IP MODELS: PIPELINING,MUTUAL 
EXCLUSION)NTERFACES . 

Our IP model can easily support conditional code for IP model I and 2. In 
model 2 the term Dj,k,t is substituted for Xj,k in the description that follows. 

Inequality (2) is generated for each set of mutually exclusive code operations or 
code operations from each possible path generated by conditional branches. 
Similarly the register allocation constraint (4) is generated from arcs which cross 
(whose head is executed before the branch and tail is executed after the join), or 
have a head and/or tail in each path generated by conditional branches. Also 
extra data precedence constraints may need to be added to prevent conditional 
code operations from being scheduled before the branch or after the join of the 
branch. 
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Fixed, minimum or maximum timing constraints between pairs (or groups) 
of operations can be incorporated into our IP model. In all examples below, T is 
the time constraint value measured in number of control steps. We use the nota
tion time(k l , k2) 2:: =s; = T to represent the minimum 2::, maximum =S;. or fixed = 
time constraint between the two operations, where time(kl ,k2) 

L( L j Xi,},U- L j Xi,j,kl)' 
i jeR(k2) jeR(kl) 

A fixed timing constraint between two operations, kl and k2, forces the 

scheduled time for operation k2 to be T control steps after operation kl or in 

other words Dk,'}=Dk,.(J+T) ,'v' j. An equivalent representation of this fixed 

timing constraint using node packing inequalities is shown below: 
L(Xi,k"j,+ L Xi,k,) =s; 1,L(Xi.k,,},+ L Xi,k,) =s; 1, 'v' h, time(kl ,k2)=T. 
i j"'j, j"'j, 

jeR(k,) jeR(kd 

The fixed timing constraint is very important for interfacing to analog processes 
which may input or output synchronous sequential data at a fixed rate, or at a 
fixed number of control step intervals (T). In addition the minimum and max
imum timing constraints of T, which will be presented next. also form facets of 
the fixed timing constrained scheduling problem. 

The minimum and maximum timing constraints are represented by the two 
inequalities shown below: 
L( L Xi,k"j + L Xi,k,) =S;1, 'v'h, time(kl ,k2)2::T. 

j>h j5.j,+T 
jeR(kIl jeR(k,) 

L( L Xi,k,,} + L Xi.k,) =S;1, 'v'h,time(kl>k2)=S;T. Both these constraints are 
j <j, j"2j,+ T 

jeR (kIl jeR (k,) 

similar to the data precedence constraints in inequalities (2), except they are 
extended in a direction by T (where C l-l=T). 

Functional pipelining for a fixed initiation rate (defined as the time between 
successive starts of an input algorithm), t, can be incorporated into our model 
without additional variables. We define r J/ II =p pipestages, and replace 

n=p 

L L Xi,j,k of (3,4,5) with LL L Xi,j+nl,k where addition U+nl) is 
k i n=l k 

jeR(k) (J+nl)FR(k) 

modulo t. Thus only variables representing code operations of one pipestage are 
used. The functional unit allocation and register allocation constraints are gen
erated for I consecutive control steps. If the number of pipestages is less than p 
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(defined above), then the model must generate these constraints for all j such 
that (J - p I) ? j ? P I. Functional pipelining maintains the node packing 
structure of the inequalities. 

Constraints which ensure that data (output from operation kout) is valid in a 

register for a least T csteps can be formulated using a dummy operation (kd ) and 

the constraint time(kou1,kd)?T, where kout<okd forms the lifetime of the vari

able which is included in the modified register allocation constraint. For exam
ple this may be important to ensure that output data is valid for access by an 
external process, that runs at a slower clock rate. Alternatively if input data, 
arriving from an external process (kext), is only valid in an input register (or at an 

input port) for T csteps (after which point it may be overwritten), then constraint 
tirne(kext,kd)$T V kd is used. Interface with analog processes can be formu

lated with the fixed timing constraints described in the previous section. A dis
joint timing constraint is used whenever an operation cannot be scheduled dur
ing an interval of time, but it can be scheduled before or after this interval. For 
example an operation which accesses data from a shared bus that is being used 
by another process for a large data transfer, would constraint the operation not to 
be scheduled during this period. Disjoint timing constraints can easily be 
modeled as : L(Xj,a,t+ L Xjl,b,t)$ 1, L(Xj,b,t+ L Xjl,a,l)~ I 

j+a>jl>j+13 j-a>jl>j-13 

V j, time(a,b)? a or time(a,b) ~ beta, a> beta. 

A new approach is presented for modeling the asynchronous interface that 
minimizes an average execution time, Te. We assume that each possible arrival 

time for input data has an associated probability, obtained from previous simula
tion studies. For example the probability of data being located in cache (the hit 
rate) could be 0.85. By modeling only selected high probability arrival times 
using a mutually exclusive conditional code approach, the average execution 
time of the input algorithm can be optimized. For example the cost function is 
Minimize Tend where Tend="'£PiTend,' T end,= L L U-I)xj,end"l (the 

I j£R(end,) 

execution time assuming data arrives during the ith selected time) and Pi is the 

probability that the input data arrives at the ith selected time. The code opera
tion endi marks the completion of the application assuming data from the asyn-

chronous operation arrives at time i. However it is possible that the input data 
will arrive at a (lower probability) time that was not selected. In these cases the 
data must be stored in a register until the controller reaches the next selected 
time at which point it can process the data. The storage of the input data can be 
modeled using dummy operations and minimum and maximum timing con
straints as described previously between selected arrival times. The IP model 
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for asynchronous interfaces is treated the same way as conditional code. Multi
ple interfaces to asynchronous operations, even ones that overlap in time, can 
also be easily modeled. Infinitely bounded asynchronous interfaces are modeled 
by selecting high probability arrival times and adding an edge from the last 
selected arrival time to the earliest cstep where all operations are interface 
dependent. 

2.10 SYNTHESIS RESULTS 

Architectures for DSP applications, stich as the elliptical wave filter (EWF) 
and the discrete cosine transform (DCT), were synthesized. The EWF has 34 
code operations and over 56 arcs in the DAG and the DCT has 42 code opera
tions and over 52 arcs in the DAG. The previously researched EWF was com
pared with simulated annealing[26] , HAL[18] , and SA W[58] solutions. In the 
EWF, functional unit and bus allocation constraints were tightened where possi
ble with ksep (equal to the fourth adder, from the top, in the critical path of figure 

2.12) and kout' Lifetime defining edges for all variables except two (which 

required 24 extra register allocation constraints), were found using the transi
tivity and alap preprocessing. The *, *pl, -, and + refer to the number of two 
cycle multipliers, pipelined multipliers, single cycle subtractors, and single cycle 
adders respectively. The IP problems were solved using the branch and bound 
solver GAMS{ZOOM[42] on a MIPS RC2680. 

Table 2.1 shows the results of simultaneous scheduling and allocation of 
functional units for the DCT example. This example was solved using the two 
phase methodology outlined in section 2.7.1. The DCT example was quoted in 
[59] as being too large for an IP approach to synthesis. Results on cpu time in 
table 2.1 show that our IP approach can solve for many different architectures in 
under 9 cpu minutes. In phase I the area was minimized given a upper bound on 
execution time (Te) and fixed initiation rate (I or the number of csteps in 
between successive initiations of the algorithm). The phase II optimization pass, 
shown in table 2.2, minimized the execution time (or delay) for the fixed initia
tion rate, 1, and fixed area (value equal to minimized area value of phase Ioptim
ization pass). For example with 7 adders, 7 subtractors, 8 mUltipliers, and 1=2 
(see row 3 of table 2.1), the execution time was minimized to 9 csteps. The IP 
problem took only 1.26 cpu seconds to solve and had 358 variables and 482 
equations. Each phase II IP approach row in table 2.2 required less than 50 cpu 
seconds to solve. Unfortunately there were no cpu times quoted for the PLS 
algorithm [59] . Each architecture for the DCT (represented by a row in table 
2.2) required less than 100 cpu seconds in total including phase I and II (except 
for the last row of table 2.1 which required 471 seconds). 
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Table 2.1. DCT Synthesis Results (Phase I: Minimize Area) 

I Te + - '" Var Eqn CPU (sec) 

2 12 7 7 8 355 458 0.24 
3 12 5 5 6 355 461 0.45 
4 15 4 4 4 397 523 62.3 
8 15 2 2 2 397 535 175 
12 12 2 2 2 355 497 12.8 
13 13 1 1 2 355 497 471 

Table 2.2. Comparison ofDCT Synthesis Results (Phase II: Minimize Te) 

Synthesizer I Te + - '" 
IP approach 2 9 7 7 8 

IP approach 3 9 5 5 6 
PLS[59] 3 10 5 5 6 

IP approach 4 10 4 4 4 
PLS[59] 4 11 4 4 4 

IP approach 8 11 2 2 2 
PLS[59] 8 12 2 2 2 

IP approach 13 13 1 1 2 
PLS[59] 13 16 1 1 2 

Two solution techniques, LB and KP, were demonstrated with the IP 
approach[60] and are shown in table 2.3. The first method, LB, calculates lower 
bounds on all variables and branch and bounds to obtain a solution. The second 
method, KP, additionally uses knapsack inequalities to improve the bound on the 
number of busses before the branch and bound. Table 2.3 shows a comparison 
of the EWF synthesized solutions with previous research. From the 17 cycle 
simulated annealing schedule given in [26] , although not specified the eighth 
row requires 11 busses and the IP solution requires 10 busses. The 17 and 18 
cycle IP solutions given in table 2.3 required 0.5 cpu minutes and 3 cpu minutes 
respectively (using the LB method) where after branch and bounding on 1;,R,B 

variables, the initial LP provided all Xj,k integer solutions. These cpu times are 

faster than the 2 cpu minutes and 4 cpu minutes respectively quoted by HAL[ 18] 
and simulated annealing[26]. HALs EWF synthesis for 19 csteps[18] requires 8 
busses and 12 registers (in 6 cpu min), unlike the optimal IP approach with 7 
busses and 9 registers. This architecture was synthesized in less than 6 cpu 
minutes This cpu time included calculation of lower bounds and IP solution for a 
globally optimal solution. 
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Table 2.3. EWF Synthesized Architecture Comparisons 

Synthesizer Te "'pi '" + R B Total CPU minutes 
LB KP 

IP approach 21 1 2 9 7 30 6 

SAW[58) 19 2 2 11 9 na 
HAL[18)t 19 1 2 12 8 6 
IP approach 19 1 2 9 7 5.8 -
HAL[18) 18 1 3 12 na 4 
IPapproach 18 1 3 10 9 3 -
IP approach 18 2 2 10 8 3 0.5 

HAL[18) 17 2 3 12 na 2 
IPapproach 17 2 3 10 10 0.5 -
IP approach 17 3 3 10 10 0.5 -

Minimize SOl + 2S0 I. + ISR + 100B +SOT t! ( + 12 ) 
tHAL 6 busses + 2 local busses[18);SAW page 79 in (58);-/na= not applicable 

R does not include IN and OUT of EWF, CPU min. for PC386 

Table 2.4. Comparison of CPU Seconds for EWF 

Synth # Code Te ·pl + Var Eqn CPU 
Operations (sec) 

IP approach 34 19 1 2 130 160 36 
BAKER 34 19 1 2 130 120 600t 

IP approach 102 50 1 3 310 407 40 

t branch and bound IS requIred. CPU sec on PC386 
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The area-delay (12) optimized solution for two cycled multipliers (with an 
upper bound of 18 cycles) is shown in row seven of table 2.3. The LB method 
solves for a globally optimal schedule and allocation in less than 3 cpu minutes 
total. By fixing B=7, we were able to extract knapsack facets of this constraint 
and use it to show (via the infeasible LP) that the bound of 7 busses could be 
improved. The bus allocation constraint[60] with B=7 is 
3 ~h,+ + Lxi,* + LxV-I),*::;; 7, 'r/j. The generalization of one facet of this 

+ • • 
knapsack inequality is 

+ 
j£R(+) 

j-leR(*-l). Using these knapsack inequalities it required 9 cpu seconds to 
determine that the new LP was infeasible. We therefore improved the lower 
bound from 7 to 8 busses and solved the IP problem (using branch and bound) to 
obtain an all integer solution in a total of 24 cpu sec (0.5 cpu min in total in table 
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2.3). Other knapsack inequalities were used for the EWF example with Te::21 
csteps, whose IP model had 202 variables and 308 constraints. The initial lower 
bounds were 1+=2,1 .. =1, R=9, B=6. Generalized knapsack inequalities extracted 

from the bus allocation constraint, were used to created the new LP (with B=6) 
which was infeasible. So by setting Bill = 7 we could branch and bound to a 
completely integr solution in 6 minutes total. Without using the knapsack ine
qualities (ie. B =6) we required 30 minutes of branch and bound (see table 
2.3) to find the same globally optimal solution. Both examples illustrate the 
advantages of using knapsack facets for efficiently solving IP problems. 

Table 2.4 shows the total cpu seconds required by the IP model for minim
izing the area cost function in (12) for functional units alone. In row one the 
relaxed LP with (integer rounded) lower bounds produced integer solutions in 36 
cpu seconds (for model generation and LP execution). We also ran this same 
instance of the EWF problem using the precedence constraint (2*) of [23,24,61] 
which required branch and bound [42] to find an integer solution in approxi
mately 10 cpu minutes (see second row, BAKER, in table 2.4). In both cases 
solutions are globally optimal for this cost function and the same IP solver[42] 
was used. Row three illustrates how efficiently we can simultaneously schedule 
and allocate large algorithms such as the EWF which was unrolled three times 
creating 102 input code operations. Over 300 Xj,k variables were solved to 

integer values in the initial LP in less than one cpu minute. These results illus
trate how important good bounds and tight models are for solving integer pro
grams. 

To illustrate the IP architectural synthesizer for asynchronous interfaces we 
have introduced communication with an asynchronous external operation into 
the EWF example[62] . The asynchronous operation, a, which is external to the 
synthesized chip, receives input data from the bold addition operation in figure 
2.12 (+<oa). This operation must also return data to the filter at some indeter
minate cstep (a<o*). The asynchronous operation can at the earliest produce 
data after two cycles and at the lastest after 4 cycles. An area constraint of 2 
adders and 1 two-cycle multiplier was used and the average execution time was 
minimized. The asynchronous operation, a, can at the earliest produce data after 
two cycles (with probability 0.6) and at the lastest after 4 cycles (with probabil
ity 0.4). The optimal schedule, shown in figure 2.12, used 425 variables, 610 
equations, and was synthesized in 190 cpu seconds. 

Alternatively the IP approach can minimize chip area with constraints on 
the average execution time. The area cost function 501t, + 250110 + 10 R + 
lOB (R and B is the number of registers and busses) was minimized. The con
straint on the average execution time was Te,=21 and Te,=26. The IP approach 
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Figure 2.12. Optimized schedule and allocation, with asynchronous interface to 
a, which minimizes the average execution time (23.8) for P J=O.6,P 3=0.4. 

The dashed line represents input buffer allocation for data arriving at the 
lower probability time. 

required 254 variables, 592 inequalities, and synthesized a globally optimal 
architectures in 8.3 cpu seconds. To illustrate the impact of the model formula
tion on the efficiency of solving the IP, the data precedence constraints were 
replaced by a previously researched constraint[23, 61) . This modified IP model 
had the same number of variables, 469 inequalities, and required 274 cpu 
seconds to solve (using the same IP solver on the same cpu). 

The EWF was also used to demonstrate how IP approach can support 
automatic selection of chained operations. The following types of functional 
units were allowed: two-cycle multipliers, two-cycle multiplier-adders, one
cycle adders, and a one-cycle adder-adders. IP approach minimized the area of 
the architecture by selecting and allocating functional units simultaneously with 
scheduling operations, given an upper bound of 14 csteps on the total execution 
time. Figure 2.13 shows the IP approach solution requiring one adder-adder and 
two multiplier-adders. This architecture was globally optimized in 13.6 cpu 
seconds, requiring 202 variables and 447 inequalities. Note that the single addi
tion operations shown in figure 2.13 can be implemented with the second 
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addition in the adder-adder or with the addition in one of the multiplier-adders. 

I 
I 
I 
I 
I 
I 
I ..... 

Figure 2.13. Chaining of operations to optimize speed and minimize execution 
time. Two multiplier-adders and one adder-adder type of functional unit 
were automatically selected simultaneously with scheduling and allocation. 

Figure 2.14 illustrates the area-delay curve for the EWF obtained by exa-
mining a different number of clock periods which allowed chaining of opera
tions, and single cycle and multicycle operations. A multiplier with 49KmiP 
area and delay 375ns, and an adder with 1200miP area and delay 151ns was 
selected from a library (along with a 5ns delay register). Clock period 1 was 
chosen to be 156ns so that the multiplier required 3 cycles and the adder 
required one cycle. Clock period 2 is 190ns so the multiplier requires only two 
cycles latency. Clock period 3 is 265ns so that two adders can be chained 
together and perform two additions in one cstep. Also a multiplication followed 
by an addition operation can be performed in two clock periods. Each point on 
the area-delay curve required less than 10 cpu seconds to obtain using the IP 
approach[63] . 

2.11 DISCUSSION AND CONCLUSIONS 

A DSP methodology based on IP approach to architectural synthesis has 
been presented. Using polyhedral theory, we have shown that optimal solutions 
to the simultaneous scheduling and allocation problem can be solved in cpu exe
cution times faster or equivalent to previous research which use heuristic 
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Figure 2.14. The Area vs. Delay curve for the EWF example. 
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techniques. Furthermore we have also shown that previous heuristics have not 
obtained the globally optimal architectures that are synthesized using the IP 
approach. Many other examples have been synthesized with the IP model[ I] . 

The worst case complexity for the IP problem in theory is exponential. This 
gives a poor representation of the expected complexity, since it means that there 
will be some problems which will take a long time to solve. However similar to 
previous research[27] we have found that most problems are solved very fast 
and it is expected that the majority will exhibit this behavior. Although we can
not guarantee 0-1 solutions, (the problem is NP-complete) most examples we 
have optimized provide 0-1 solutions. For the first time our IP model provides 
tight bounds on the architectural synthesis problem which is extremely impor
tant for any synthesis solution technique, including simulated annealing or the 
use of techniques described in this chapter. 

A second approach for dealing with complexity relies upon the designer to 
select subsets of the model to explore the design possibilities. For example one 
can fIrst minimize the number of functional units and then secondly minimize 
the number of registers to explore the architectural design space. There also exist 
various input algorithm partitioning strategies that have been researched to deal 
with complexity such as vertical partitioning in [64] or partitioning and pipelin
ing of the algorithm as demonstrated with the matrix multiplication example in 
this chapter. However more importantly we have demonstrated that over 100 
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code operations (EWF, table 2.4) can be simultaneously scheduled and allocated 
in very fast cpu times. Large examples where on average each code operation 
can be scheduled in anyone of 9 possible csteps (OCT, table 2.1 and 2.2) have 
been solved in practical cpu times. This ability to optimally synthesize large 
complex algorithms is a significant contribution to the synthesis field. The two 
phase optimization method has created architectures for nsp applications that 
are up to 23% faster than previous architectures (see table 2.2). 

Currently we have extended our model to include muItichip syn
thesis[65, 66] and retiming[67] . In the future we intend to extend the IP model 
for simultaneous scheduling, allocation and binding (to minimize the number of 
multiplexors and the number of inputs to multiplexors). We also plan to conduct 
further research on the extraction of more facets and the use of this model for 
interfacing to analog signal processing domains. The IP model presented in this 
chapter is a significant contribution to the field of high level architectural syn
thesis. For the first time we have proof that the synthesized architectures are 
globally optimal. This is important for industry since the early decisions made 
during architectural exploration have the greatest impact on the final design. 
Previous synthesizers could at best guarantee a locally optimal synthesized solu
tion, which may not meet design constraints. Finally we have demonstrated that 
the IP architectural synthesizer can handle input DSP applications with different 
types of structure, with over 100 code operations and with complex constraints. 
In summary this research guarantees globally optimal synthesized solutions, 
synthesizes large input applications in practical execution times, and supports 
complex constraints and cost functions. 
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Synthesis of Multiple Bus Architectures For 

nsp Applications 

Baher S. Haroun! and Mohamed L Elmasrr 

Abstract 

In this chapter, we present synthesis techniques of parallel VLSI processor archi
tectures with multiple busses and functional units used for DSP applications. The 
presented architectures and synthesis approach are most suitable for applications 
with medium sampling rates (few MSamples/Sec) and medium to large storage 
requirements (tens to thousands of words) such as in single and multiple channel 
filtering and transform algorithms. Novel synthesis algorithms and architecture 
support are described for looped execution of regular algorithms which allow 
multiple address space for looped variables. These synthesis techniques are used 
in an architectural synthesis tool "SPAID-X" which inputs the behavior specifica
tion as a hierarchical signal flow graph representation that support folded loop 
constructs. The output of the tool is an architectural specification of the data path 
and the controller. We demonstrate the functionality of SPAID-X and the quality 
of the resulting architectures on a number of practical DSP applications and show 
that it produces results that are favorable to other approaches. 

1.0 INTRODUCTION 

The use of architecture synthesis tools to automate the search for an optimal VLSI archi
tecture from a graph or language description of a signal processing system behavior have 
seen considerable emphasis in the past few years. The tasks performed by a synthesis tool 
are highly dependent on the underlying architecture structure and its main hardware com
ponents; the data-path composed of the functional units, data storage and their intercon
nection and the controller or interconnection of controllers. Different architectural styles 
and models are required for different sampling speeds and applications [1,2]. The main 
task of synthesis is to allocate the hardware resources and explore the different parallel 
implementations that executes the described behavior and satisfies the speed and cost con
straints. Another important task the synthesis tool environment should provide is the 
exploration of the described behavior for alternative representations where each represen
tation may induce different requirements on the hardware. These different representations 
can be explored through behavior preserving transformations. Therefore a synthesis tool 
for DSP has to provide its user with an environment that provides for: 

• A natural behavior representation for DSP applications which is easy to learn and can 
hide the details of the hardware implementation. 

1. ECE Dept, Concordia University, Montreal, Quebec, Canada. H3G IM8. haroun@vlsi.concordia.ca 

2. ECE Dept, University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1. 
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• Exploration of the different representations of a described behavior. 

• An underlying architectural model (or models) suitable for the application and 
performance requirements. 

• Synthesis algorithms and methodology that are used for that architecture exploration, 
optimal generation and efficient utilization that can take into account technology 
dependencies of speed, area and power dissipation. 

Figure 1 shows the different dependencies of architectural synthesis and interactions. 

Behavioral 

Structural Description 
& Parameters Specified 
for the Architecture 

Figure 1: Architectural Synthesis 

It is assumed that the structural description output of these tools feeds module generators 
and layout compilers to produce the final chip layout. In this chapter we elaborate on the 
above four points in architectural synthesis, specifically concerned with signal processing 
applications. Our architecture model will be that of the bus based processors. SPAID-X, 
an architectural synthesis tool for Signal Processing Automated Integrated-circuit Design 
with eXtended design space, is used and presented as our example synthesis tool. 

2.0 ARCHITECTURE MODEL CLASSIFICATIONS 

We classify architecture models used in the synthesis of multiplexed architectures into 
three categories depending on the topology of their final VLSI layout. The method by 
which the main components of an architecture, the storage units and computation units, 
are interconnected determines their topology, hence we have the three categories; random, 
linear and regular topology architectures. 

2.1 From Random to Linear Topology Architectures 

To illustrate the differences between random and linear topology architectures, we use a 
small example of a second order digital filter (Figure 2). The operations of the filter 
(Al,A2,Ml,M2) can be mapped directly onto an architecture with two adders and two 
multipliers and has the same structure of the filter with one to one correspondence of oper-
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ations to functional units (adders, multipliers or FUs for short). Although such a direct 
implementation is as regular as the signal flow graph it represents, the architecture is inef
ficient especially if loops exist that have long delays between storage (z-l registers). 

IN 

T 

A2:\':I:.,.... ... -rn 

Figure 2: Second-Order Filter Example 

To demonstrate the inefficiency, assume that the multiplier takes 40ns and the adder takes 
20ns to produce valid data at their outputs, we can easily see that the fastest time that this 
filter can operate is the time for the closed loop (A2,AI,M2) to finish, which is 
(40+20+20=80nsec). Hence the maximum throughrut for this filter is to have a new sam
ple every 80nsec (neglecting storage time in the z- pipelined registers as well as commu
nication delays). The adders will only be used 20nsec out of every 80nsec i.e. 25% 
efficiency, while the multipliers will be 50% efficient. 

To reduce the inefficiency of direct implementation, random topology architectures 
attempt to re-use the FUs and share them between operations. A random topology data
path architecture for the above example filter is shown in Figure 3.a. It has one adder and 

Cycle-l 

IN 

IN 

Cycle-3 
Cycle-4 

(b) 

System Cycle 

(c) 

Figure 3: Random Topology Data-Path Architecture 

one multiplier. Figure 3.b shows the execution sequence in four cycles where the lightly 
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shaded lines indicate hardware which is used in executing the operations in that cycle. The 
multiplier is used 100% of the time, while the adder is used SO% of the time. The architec
ture can operate on a new sample in slightly more than 80nSec, due to the extra multi
plexer, interconnect and pipeline register delay, Figure 3.c. The main feature of this data 
path is that the interconnection between the FUs, pipeline registers and muxes does not 
have any specific topology, hence it can be termed to have random topology. This style of 
interconnection of FU s to the registers can be generalized as shown in Figure 4.a. The lIS 

Variable 9mstant 

11II1II1~~I1I11I11I11II11~ FUs 
System Cycle lIS OIS 

Used Used 

(b) 
Figure 4: A General Data-path with pipeline registers 

and the OIS in Figure 4 can be one of three types: a mux style, a tristate style or a bus style 
structures as shown in Figure S a-c. The mux style can result in high fan-in muxes which 
can require a large interconnection area. The tristate style (Figure S.b) replaces high fan-in 
muxes with busses which can reduce the intercomiect complexity but can result in extra 
capacitive bus loading (due to tristate buffers output capacitance) which increases the IS 
delay. The bus style (Figure S.c) can result in less interconnect area than Figure S a, b as 
this style balances the use of large muxes of the mux style with high capacitive bus load
ing of the tristate style. The number of busses, NB, can change to increase or decrease 

A. = Tristate Buffer 

Figure 5: Interconnection Structures (IS) 
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accessibility of interconnections for data transfers. Smaller muxes are used in the bus style 
as less number of interconnects (busses) are connected to the muxes, while the busses are 
loaded by less tristate buffers, as outputs of IS can share busses. As more busses are added 
more parallelism is added to the number of data transfers that can be done at any time to a 
maximum of the number of destinations or sources connected to the IS whichever is 
smaller. To minimize the cost of the two interconnection structures attempts are made in 
most synthesis systems using a bus style or tristate style IS to further share the busses 
between the ns and the OIS. We notice from Figure 4.b that the lIS and OIS are used 
simultaneously in the same cycle which implies that the buses used in the same cycle can
not be further shared between the lIS and OIS. This restriction can be alleviated, as done 
in SPAID [1], by moving the slave latches of the pipelined registers through the ITS to the 
inputs of the FUs. This results in that the lIS and the OIS do not overlap in their usage 
time in any cycle and hence the two interconnection structures can be merged into one IS 
as shown in Figure 6.a. Figure 6.b shows that the IS is used twice in one system cycle. 

Variable Constant 
I/O Main STORAGE FUs 

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII~~~~~ 
(b) System Cycle 

I $1 

Sb" R,,,J ~i I <1>2 
(a) or FU Input 

Registers IS 
Figure 6:A General Data-path with latches at FU inputs Used 

Hence, a two phase clock is used to define the data transfers on the IS. In <1> 1, the data 
moves from storage to the FU input latches, on <1>2 the data moves from the output of FU s 
to the main storage. Input and output ports to the system can be considered as either FUs 
or as storage. 

The topology of the IS determines the topology for all the data-path. We show in follow
ing sections, that defining a bus style structure for the IS results into a linear topology 
architecture. One advantage of the architecture in Figure 6 over the one in Figure 4 when 
using bus style ISs is that in the latter, as long an operation is executing on a FU, the lIS is 
used. For operations which use more than one cycle execution time the bus (in the lIS) 
used for that operation cannot be used (shared) to transfer data to other operations during 
these cycles. For the former architecture this extended use of the busses is reduced to a 
fraction of the cycle because data is latched at the other end of the connection which 
leaves the bus free to be used either at the end of the cycle (<1>2) or in other subsequent 
cycles. This means that a more efficient interconnection structure can result. Moreover, 
one can increase some operation's execution time (more than the required delay) for cer
tain operations to reduce the demand on busses at specific clock cycle time which can fur
ther reduce the interconnections required. 
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2.2 Review of Synthesis Tools for Different Topology Data-Paths 

Random topology architectures refer to an irregular interconnection between the func
tional units (FU s). pipeline registers and multiplexers to form a pipe lined data path. Vari
able and state storage are mainly done by the pipeline registers, the structure is similar to 
that of Figure 4, where the interconnection structures (ISs) are personalized to the specific 
synthesized algorithm. Both mux based and bus based interconnection styles where used. 
Examples of these architectures can be found in [7-9]. The main reason for the random 
style of interconnection that result from these synthesis tools is the reduced sharing 
between the IIS and the DIS because of the overlapping in the their use in one system 
cycle, as well as that interconnect binding is left at a later stage in the binding process and 
are not taken initially in the synthesis as constrained resources. Large storage of data was 
not addressed for these style of data-paths. 

Linear topology data-paths are characterized by the bussed interconnection between its 
functional units with a pre-scheduling assumption that FU s have access to a constrained 
number of busses. The bus topology results in efficient layout compared to random topol
ogy, on the expense of the possible increase of the system clock cycle duration because of 
bus delay overhead. Data storage is done through register files placed at either FU inputs 
(CATIIERDRAL_II)[2], as multi-ported register files (Theda) [6]. or on each bus as in 
SPAID [3] and ASPS [11]. Large storage of variables were addressed for this style of 
architectures [2,3,11] by assuming RAMs as FU s during synthesis and explicitly including 
RAM load/store operations in the behavior specification. Full automation for memory 
assignment was not achieved as the following tasks were relegated to the user of the syn
thesis system in case of SPAID and CATIIEDRAL-II; a) Distributing the data storage on 
to separate RAMs. b) Deciding on the mechanism for parallel access of data from the 
RAMs by the data path and address generation path. c) Specifying the address space and 
address computation. These tasks are automated in SPAID-X as shown in later sections. 

The third category, the regular topology, has evolved from the random topology to resolve 
the large interconnect area that results with random topology approaches and without 
resorting to the use of busses which may increase cycle time and hence reduce throughput. 
Regular topology architectures use the regularity inherent in some DSP algorithms to gen
erate similarly regular pipelined architectures with partitioned control. Cathedral-3 [14] is 
the main example in this architecture model, which uses lowly multiplexed pipelined data
paths that exploit regularity of the data flow graph by partitioning it into clusters and re
grouping compatible ones into sets of operations. Algorithm specific units (ASU) are 
designed for these sets where chaining of operations is allowed as well as deep pipelining. 

In this chapter we present the synthesis techniques for a linear topology multiple bus 
architecture. The original multiple-bus architecture (SPAID) was presented previously in 
[3,4]. In the following sections, extensions to that architecture to handle algorithms that 
require large storage (SPAID-X) are presented. In section 3 , we present the behavioral 
representation to the tool SPAID-X. In section 4, algorithm transformations which can 
affect the final architectural outcome of the synthesis tool are discussed. The different 
aspects of the synthesis tool SPAID-X are detailed in section 5. Finally experiments with 
the synthesis tool are presented in section 6. 
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3.0 DSPALGORITHM REPRESENTATION 

Behavioral representation of an algorithm to a synthesis tool has to be closer to the appli
cation domain it describes than to the hardware it is supposed to generate. Using flow 
graph representations is natural for most DSP applications. A graphical representation h 
easier to learn compared to learning a new language. Hierarchy in a graphical representa
tion results in a block diagram equivalent of the designed system. It has been used for rep
resentation for different applications: 

• DSP simulators; SPW from Comdisco [18] . 

• Retargetable compilers for single and multiple programmable DSPs; OABRIEL[19]. 

• Synthesis of ASICs; SPAID-ACE [17], HDS/SPW [18]. 

The graphical representation facilitates estimating timing bounds on execution like mini
mum latency and throughput. Structural transformations can be done on the graphical rep
resentation to optimize system timing (CSD coding, retiming etc.) as explained in 
following sections. We present here a generalized signal flow graph representation 
(OSFO) that is used as an input to the synthesis tool SPAID-X to specify DSP algorithms. 
The OSFO can be used to represent general single and multi-channel filters, single and 
multi-rate systems as well as transform such as FFf. 

3.1 The GSFG Representation 

The nodes of the OSFO are either one of the following: 

• Executable Operations, N, can be of any of a number of primitive types; additions, sub
tractions, comparison, multiply etc. The expressiveness of the OSFO depends on this 
primitive set. Input and output operations are considered executable. 

• Non-executable operations, NX, are constant nodes, source and termination nodes. 

• Executable Block Nodes, BN, are represented in a lower level of hierarchy by only 
other block nodes or a Ground Block Node. 

• Ground Block Nodes: OBN, are represented internally by a signal flow graph (SFO) 
which is formed only of executable operations. A ground block node is also used to 
represent an inner loop for looped execution, and is annotated by the range of the loop 
indices (more details in section 3.2). 

The edges of the OSFO represent data values and are either: 

• Variable edges E which also indicates data dependency and operation precedence. 

• Constant edges EC. 

• Input/output edges EIO. 

• Time (Non data) precedence edges P (forced time precedence between nodes). 

Each edge is either a wrap_edge or an inner_edge. A wrap_edge is used for representing 
looped execution as explained in section 3.2. The inner _edge is used to represent all other 
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edges and is of the fonn innerJdge(Source_node, Destination_node, Separator). Any 
edge can be a separator edge which has z-w delay with weight w. Separator=l if a z-l 
delay register was intended in the original SFG on that edge and the edge is called a Sepa
rator edge, otherwise if Separator=O, the edge is called a non-Separator edge. Note that an 
infinite number of outer loop iterations in a DSP system is always implied by a GSFG. An 
example of a GSFG representation of an elliptic wave digital filter is shown in Figure 7.a. 
This filter has been used as a benchmark filter for synthesis. This filter contains 8 multipli
cation and 26 addition operations. It has 68 data edges, a number of which carry identical 
data. For example addition operation A I, has three output edges all carrying the same out
put variable from A 1. 

I = Separator 

Edge; Z-l 

= = 24 Channels Separator Wrap_edge 
a-~~&-~~~B-~~-.~~&-~AB~--~~~m 

(b) 

Figure 7: Elliptic Filter SFG (a), 24·Channel Telecommunication Filter (b) 

3.2 DSP Algorithm Representation For Looped Execution 

Signal processing algorithms such as multi-channel filtering, transfonns (FFT, DCT etc.), 
image convolution algorithms and artificial neural networks processing algorithms, all 
share the property of being regular algorithms that require repeating a finite number of 
times a specific sequence of operation on a large number of different data sets within 
another infinite time loop (the implicit DSP iteration every sample period). 

In SPAID-X, a hierarchical signal flow graph SFG is used to represent a DSP algorithm 
containing loops. A looped execution of a SFG can be done by folding the original flat 
SFG onto the inner loop SFG. We use an example of an 8-point FFT shown in Figure-8.a 
to demonstrate the folded representation. The FFT is folded into a one butterfly inner loop 
as shown in Figure-8-c, or partially folded to a double butterfly inner loop as in Figure-8.d. 
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All instances of the inner loop are indexed with one or multi-dimensional Indices. The use 
of partially folded loops as inner loops results in more parallel operations to be scheduled 
which can increase the architecture utilization, hence throughput, on the expense of a 
longer control sequence for the inner loop. The folded SFG has edges that represent one or 
more of the edges of the original SFG. Each edge which wraps around the inner loop (the 
one or double butterfly in our example) is represented by a relation: 
wrap_edge(Source_node, Destination_node, listo! _all_indeces, Separator). Where 
listoLalUndices is a list of elements of the form [Source_index- DestinationJndexl 
indicating all the edges in the flattened SFG that fold into this wrap edge in the folded 
representation (Figure 8.c or 8.d). Each index is an ordered set [e.g.(I,J)] indicating the 
row and column of the inner loop in the original SFG. Constant and input/output edges 

(c) (d) 
All possible data transfers for a 
loop of double butterflies for an 

All POSSl e ta transfers for a loop of 8-point. FFf arising from all 
one bUller fly of an 8-poinL FFf arising instances of this loop. The 
from all instances of this loop. The shaded arrow indicates the 
shaded/dashed arrow indicates the above ... 1'1---1.0 shaded two transfers in the 8-

shaded/dashed four transfers. ~:=::::~r"'..,tI+-.... .o point FFf. 

Figure 8: Folded FFT representation 

are also defined similar to the variable edges and are of type wrap or inner. In the looped 
representations both the hierarchy and folding can be totally or partially flattened in an 
implementation. These trade-offs are left to the user of the synthesis tool. 

In the case of representing multiple channel filters, each separator edge of the SFG has a 
listoLalUndices with a length equal to the number of channels and its elements are of the 
form [I-I] for all channel Indices. An example of a 24 channel telecommunication filter is 
shown in Figure 7.b. 

The folded graph or the SFG, G, is used as the data structure in the scheduling and binding 
phases of our synthesis tool by properly annotating the nodes and edges of G. Note that 
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the folded representation used in SPAID-X does not have any implicit address generation 
as the Silage description of the FFf in [13]. 

An important property of the folded graph is that it can have an input to a node (operation) 
with more than one incident edge. These edges represent data transfers that are mutually 
exclusive that do not occur at the same time as they occur at different instantiations of the 
inner loop. Note also that the out-degree of the output of an operation increases quite sub
stantially in the folded graph. This high in-degree and out-degree of the folded graph has 
ramifications on the synthesis procedure as shown in subsequent sections. 

3.3 Bounds from the Signal Flow Graph 

Bounds on the total execution time and the architecture can be derived from the SFG 
description if the sample period of the DSP algorithm is known (Tsample) and an estimate 
is known for the delay in executing each operation on a given functional unit(FU_delay). 
Typically there can be more than one operation delay depending on the selections done for 
the functional units. Also for the technology used one can have rough estimates of bus 
delays, register read/write delay times. 

The following are a set of measures that are useful for obtaining bounds on the architec
ture as well as total execution time: 

• Operation DelaYOp_Type=(2*Bus_Delay + Read_delay + Write_delay + FU_delay) 

• Shortest Execution Time (Texec)shortest = LDelaYop_type of the longest delay path in the 
graph with total separator weight=O. (1/ (Texec)shortest) gives the maximum throughput 
for the given SFG. An architecture exists if Tsamp1e > (Texec)shortest. 

• Minimum Execution Time (Texec)min = LDelaYop_type of the longest delay of a loop/ 
path divided by the total separator weight in that loop/path. ( lI(Texec)min) gives the 
highest throughput that may be achieved by a retiming and pipelining. (section 4.2). 

• Lower bound on the number of functional units (NFU) of type (Type) that execute oper
ations of different types (OpType) and an efficiency (FUEfficiency which is typically 
between 50-100% in a number of applications) is given by: 

NFU r '" (NumberajOperatianSOPTyp)JelaYOPType) . . 1 T = L I (FUEjj.Clency) 
ype 'VOPType Tsample 

• A lower bound for the architecture clock cycle Tcycle is the minimum (DelaYop_type). 

The ratio R=TsampIJTcyc1e or (Texec)shortestfI'cyc1e can be used to determine the style of the 
architecture to be used. In SPAID-X, the suitable ratio is from tens to few thousand and 
NFU less than 10. This is because a high ratio means that the architecture is highly multi
plexed and there is enough sequential execution to warrant a bussed architecture. On the 
other hand, for DSP algorithms where this ratio R is less than 10, a highly pipelined archi
tecture (of random or regular topology) is most suitable as the degree of parallelism is 
very high at such low ratios and have to be used to achieve the high throughput. 
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4.0 DSP ALGORITHM TRANSFORMATIONS 

For each intended behavior of a DSP algorithm there are more than one SFG representa
tion that have equivalent behavior but different hardware implementations. Transforming 
one representation of behavior to another is important in a synthesis tool that works as an 
aid in exploring the design space. Structural transformations are applied on the behavioral 
description GSFG and do not affect the behavioral intent. 

Transformations that can be performed on a SFG have either local or a global effect on the 
graph. The goal is to achieve the following: 

• Reduce (Texec)shortest. The delay on the critical path can be reduced by changing the 
operations done (local transformation) or by inserting separator delay(s) between input 
and output hence pipelining the behavior (global transformation). 

• Reduce (Texec)min; By moving separator delays around a loop, the delay of the longest 
path can be distributed on to shorter ones (global transformation) . 

• Increase the efficiency of utilization of PUs; By re-arranging Separator storage such 
that operations of one type are not to be executed all towards the end or towards the 
beginning of the execution sequence (global transformation). 

4.1 Global Transformations 

Retiming Transformation: it is an optimization technique based on separator register l 

movement. It affects the length of the critical path delay between separator registers as 
well as the number of separator registers. Retiming was proposed to improve the clock 
rate of synchronous circuits[20] by minimizing Texec of a given SFG. Retiming can be 
done by applying cutset transformations on the SFG. A cutset is composed of two types of 
edges with different directions with respect to the cut. Subtracting a fixed number of sepa
rator registers from each edge in the cutset in one direction, and adding the same number 
of separator register to each edge of the cutset with the other direction, without having 
negative separator registers, results in no change in the functionality of the GSFG as 
shown in Figure-9. Applying the cutset locally on one node, one can move a fixed number 
of delays from the input edges to the output edges of the node. This local register transfor
mation can be put in a set of linear inequalities, with global constraints on path delays, and 
total latency. Details of the formulation can be found in [3]. 

ilPt . o=F(i1(t-l),i2(t-l)) 
12 (a) . IICi ~. 

i1 
~ o=F(i1 (t-l),i2(t-l» 

i2 (b) 

Figure 9: Retiming Transformation 

A consequence of retiming, apart from reducing the critical path delay and decreasing the 
number of data dependencies, is that the order of operation execution can change after 

1. A separator register corresponds to a separator edge with z-l delay. 
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applying one cutset transfonnation. Referring to Figure 9, operation F in (a) has first pre
cedence and can execute in the first cycle since its data are readily available from the pre
vious iteration execution, while in (b) operation F has last precedence and can only 
execute after all preceding operations have been executed. This change of precedence can 
be used to advantage to balance the operation requirements in the different states (clock 
cycles) of the execution. For example, two addition operations with the output of the first 
is connected to the input of the other with an edge weight of w=O, can only be done in 
sequence in one sample period. If a separator register can be placed on that edge with 
retiming, then the order of execution may be reversed or even can be executed in parallel. 
This demonstrates the extra degree of freedom that can be introduced by retiming to the 
scheduling of operations. Another advantage is that the retiming fonnulation can allow for 
an extra latency to be inserted between input and output. This is equivalent to pipe lining 
the behavior description level rather than functional pipe lining at the hardware level. They 
are essentially equivalent, but behavioral pipelining can also be done for recursive filters 
which is not the case when functional pipelining is used. 

Unfolding transformation: This is a useful global transfonnation required to accommo
date multi-rate DSP systems [4]. In addition, for single rate systems it can result in better 
architectures. In this transfonnation the operations of k consecutive sampling iterations 
are merged together in one iteration operating on one data vector formed of k consecutive 
data inputs and producing one output vector of k consecutive outputs. Moreover, unfold
ing transfonnations are used to achieve upper bounds on throughputs in single rate DSP 
algorithms, and in conjunction with local transfonnations can lead to a scattered look 
ahead implementation [22] as shown in the next section. In Figure lO-a, a DSP algorithm 
SFO H is represented in an applicative state transition fonnat where A is an interconnec
tion of the nodes of H, and all edges with w=l are displayed as feedback path S. Inputs X 

and outputs Y are operating at a rate Iff. First, an extra weight k is added to the input sep
arator edges increasing its latency by k*T; k an integer (assuming that this latency increase 
can be tolerated by the external behavior). Figure 1O.b defines the unfolding transforma
tion using a decimator at the input and an interpolator at the output and an unfolded func
tional block A k operating on k data values at a time. The details of A k are also given in 
Figure 1O.b, which is fonned by replicating A (the OSFO without separator edges) k times 
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and properly adding the edges between the replicas of A. Note that the resulting graph of 
A k has k times more operations in it but k times more time to execute. The extra opera
tions present can allow for better utilization of the architecture and can also allow other 
local transformation, described in the following section, to have a significant effect on the 
Texec· 

4.2 Local Transformations 

A number of local transformations can be applied on few operations of the SFG with an 
objective to either reducing Texec or eliminating operations from the SFG. This can have 
an effect on the quality of the architectures synthesized. Local transformations have been 
used in a number of synthesis systems (SPAID[3], HYPER [5]). The transformations are 
performed either manually or by using scripts consisting of a sequence of local and global 
transformations as done in SPAID-X or in an automated probabilistic search to minimize a 
heuristic cost function as done in HYPER. The important local transformations are sum
marized in Figure 11 in the following types. 

2kA~B A_I -....~Shiftg.B 
(a) 

~ ... 
((A+B)+C)+D) (b) 

~~-
~)+(C+D) 

~Bc) ....... ~""lB) (c) 

~'B)""l ~ ~""l'B) 
C 

A 
B 

~Cl~~ 
(e) C2*C~ 

Figure 11: Local Transformations 

C 

• Equivalence: Used to replace an operation by a less costly one (or eliminate the opera
tion, e.g. multiply by one) as shown in Figure 11.a. A common example for the equiva
lence transformations is the elimination of multiplications by constants with shift/add! 
subtract operations using cannonic signed digit (CSD) representation. 
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• Association: Used to reduce the level of a group of operations to reduce delay on a crit
ical path as shown in Figure l1.b 

• Distribution: Used to reduce the number of operations as shown in Figure 11.c 

• Commutation: Used to reduce the delay on the critical path. As shown in Figure l1.d, if 
B is available at a later clock cycle than C, then exchange B and C. 

• Constant Propagation/Back Propagation: Used to reduce the number of multiplications 
as shown in Figure H.e. 

• Scattered look ahead transformation [22] is used to decrease (Texec)min .. This 
transformation is performed by an unfolding transformation then applying a sequence 
of constant back propagation and commutation transformations as shown in Figure 12. 

For four samples:-

Texec min = 4(Tadder +Tmultiplier) 

b 

I Constant 
• Back Propagation 

a2*b a*b b 

Texec shortest =Texec min = 4(Tadder) +Tmultiplier 

Texec min = Tadder + T multiplier 
Texec shortest = 4(Tadder) + T multiplier 

Figure 12: Scattered Look Ahead Transformation 

The result is an algorithm with less multiplications that can be pipelined to execute at k 
times the maximum throughput of the algorithm before applying the scattered look
ahead transformation. Note that in all local transformations, quantization behavior of 
the signal processing function may change and careful application of these 
transformations with provisions to increase bit resolution of computations to overcome 
quantization problems have to be applied. 
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5.0 SPAID-X MULTI- BUSIFU/MEMORY ARCHITECTURE 

The bus based architecture that results from our synthesis approach in SPAID-X is shown 
in Figure 13. The data-path of the architecture has NB busses, NB register files each with 
a maximum NRF registers and functional units of different types with multiplicity MFU 
for each type FU. The NM RAMs are connected to the data path through the memory 
interface, shown in Figure 13. The data path is based on the model of Figure 6 which uses 
a two phase clock. On the read phase, data are read from either the register files or from 
the memory interface to the FU input slave registers. On the write phase, data are written 
to the register files, Memory Interface OR to FU input master register. The slave register 
of the FU double buffered register is only updated on the first phase. The master register 
allows FU s to write through directly to other FU s without going through the register files. 

DATAtATH 

Register Files 

One of The FUs 

Figure 13: The Multiple Bus/FU/Memory Architecture 

The main controller, details of which are presented in section 6.5, issues a control word on 
the read and the write phases of the system.To support looped execution, loop_index 
counters are controlled by the main controller to change every new inner loop iteration 
scanning all indices values in a specified order. The main controller executes a control 
sequence repeatedly until the last iteration of an inner loop. The main control sequence is 
independent of values of the loop _index counters. Each memory (RAM) address generator 
(MAG) takes a control sub-word from the main control sequence and the loop-index 
counters to produce a memory address on each phase of the system clock, where the 
RAMs alternate between read and write. The MAG is pipelined at its output to store the 
address. The control word to the data-path is pipelined by one phase delay to allow for the 
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MAG address evaluation. The Memory Interface can be either a direct connection from 
the buses to the RAMs through a bi-directional buffer and each RAM is connected to only 
one bus, Figure 14.a, or through a bi-directional FIFO (depth X in read path, 1 in write 
path) and each RAM can be connected to any of the busses, Figure 14.b. Typically, not all 
busses are connected to the memory as shown in Figure 14.b. The depth of the FIFO, X, is 
chosen small (1 -3, and is determined by synthesis). The FIFO allows data to be 
prefetched from any RAM and wait at one of the NB busses. This allows the data-path to 
have NB parallel RAM accesses at one clock cycle from only NM RAMs (NM<NB). This 
implies that the high internal parallelism of data transfers in the data-path is maintained 
while reducing the number of RAM modules required. By reducing the number of RAM 
modules, better storage efficiency is achieved as well as less MAGs are used which 
reduces the controller size). 

These busses do not have RAM access 

a) Direct RAM connection. No prefetching. 

Not all busses are connected to a RAM. 

BUS-Nt 
::::: 
::::: 

Bus-21·1 

Bus-l r~ 
~:~0::: 

Pori

"""""""",(,)":,,,,,,,,,,,)jynm,)':§Hn;r:L~( 
b) Prefetching Allowed with X ov, 

Less RAM Modules are used in 

Figure 14: Memory Interface Detailed 

6.0 SYNTHESIS OF THE MULTIPLE·BUS DATA· PATH 

The synthesis procedure can be divided into three main tasks as given in Figure 15. These 
tasks of, allocation, scheduling and binding are inter-dependent and an optimal synthesis 
can only be a result of taking all tasks together. Because of the complexity of the synthesis 
process the task dependency is usually broken at some point and iteration is applied to 
account for the dependencies. The approach used for SPAID-X was to make an initial allo
cation assumption for the major parts of the data-path that determine the degree of paral
lelism in execution which are the number and type of PUs and the number of busses. The 
reason for such a choice stems from the fact that VLSI layout area and bus loading limit 
these allocations to only a few (1-10 typically). An exhaustive or a branch and bound 
search for these variables is used because of the limited number of alternatives and hence 
the search is practical. With such initial allocation, a more detailed scheduling and binding 
of operations to resources is done. Finally, the allocation is revisited to determine detailed 
storage allocation as well as bus connections, memory assignment and control. An impor
tant aspect of the SPAID-X approach is that the initial allocation of PUs and busses 
assumes the most flexible interconnection structure (IS) similar to Figure 6. For such an 
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initial architecture, each edge in the SFG is assigned a master register with full access to 
the IS while all FUs have full access to the IS. The IS is a bus based structure similar to 
Figure 5.c, but with all sources and destinations fully connected to all the busses. Further 
optimization of the data path results in the architecture of Figure 13, in spite of fully con
nected interconnection structure of Figure 6 being the one used in the scheduling. This is a 
major advantage for this style of architectures since if the number of busses, NB, is 
increased to be equal to a maximum of the number of FU inputs, this architecture can 
achieve the same throughput of random topology architectures with the same number of 
FUs. Because of the use of busses in SPAID-X architecture to regularly connect the com
ponents of the data-path, a linear topology layout results. This has obvious VLSI area 
advantages as was demonstrated in a chip described in [23]. High throughputs can also be 
achieved if fast busses are used in the VLSI implementation. 

Allocation 
Functional Units (FUs) 
Registers, R. Files, RAMs 
Interconnections, Busses, 
Muxes, Bus Drivers 

Figure 15: Tasks of Synthesis 

6.1 Overview of The Synthesis Procedures 

The hierarchical GSFG describing the system is used as the input. At each level of hierar
chy the block nodes are sequentially ordered to ensure data precedence. At the level of the 
ground block nodes, the SFG describing the node is then synthesized, based on the current 
allocation of FUs and busses, to obtain an execution time Texec. The actual starting and 
end clock times for each ground block node is computed after all block nodes are synthe
sized and the sequence of execution of all block nodes is known. If the execution time for 
the entire GSFG is not satisfied another allocation is tried. 

The synthesis procedures in SPAID-X of a SFG for any of the ground block nodes are 
summarized in Figure 16. An initial SFG specification of an algorithm (or a folded loop) is 
used as the input. The first step of the SPAID-X. synthesis procedure is to partially order 
the operations, N, of the SFG int<? sets (posets, N'I i=;O to I) of data independent operations 
for each poset (i), where N= IN'. For each poset N', the number of operation~ that are of 
different types which can be executed on a functional unit of type FU is N'FU. Partial 
ordering is done by default in SPAID-X by an as late as possible (ALAP) algorithm. The 
ALAP makes operations on the critical path appear early in the first posets. A poset i is not 
equivalent to state (or clock cycle) i of the architecture, the role of posets is merely to 
force precedence in the scheduling and binding phase of the synthesis. Any other partial 
order (or schedule; where a state can be interpreted as a poset index i) can be accepted as 
input, hence other scheduling heuristics such as force directed [9] can be used to deter-
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mine the partial order. The posets are used as an input to a list scheduler where operation 
bindings to clock cycles are then determined as well as their binding to specific FUs while 
taking into consideration bus availability. The details of the list scheduler are explained in 
section 6.2. One of the main advantages of using a list scheduler is that it binds one opera
tion at a time while knowing the current status of the architecture. This allows dealing 
with very complicated FUs with local storage and deep pipelining which other optimal 
schedulers (such as ILP approaches [12]) could not support efficiently. Such FUs can be 
required to handle efficiently signal processing algorithms like neural networks [16]. 

Figure 16: SPAID-X Synthesis Procedures 

Main Control 
Synthesis 
and 

Memory 
Address 
Generation 

After the scheduling is done, a throughput assessment is done based on the number of 
clock cycles required. If the throughput is not satisfied a utilization analysis of the 
resources can be done and the heavily utilized resources (FUs or busses) are incremented. 
A more accurate throughput can only be obtained if the system clock cycle is known. 
Since the system clock cycle depends on the bus loading, the estimate of the clock cycle 
has to be relegated to after the architecture optimization. 

An architecture optimization phase follows the scheduling and binding of operations to 
FUs. At this phase, the binding of data transfers to busses as well as the memory assign
ment and storage minimizations are done as explained in section 6.3 and 6.4. 

After an architecture search is performed, a full architecture specification can be generated 
from the scheduling, binding and architecture optimization phases. The full architecture 
specification includes a controller specification for both the main controller and the MAG 
of each RAM (section 6.5 and 6.6). Ideally, the controller synthesis should influence the 
optimizations done in the architecture synthesis. We partially address this issue in SPAID-
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X by providing for options in the memory optimization phase to try to minimize the size 
of the MAGs as will be explained in section 6.7. 

6.2 Scheduling of Operations and Bus Transfers 

Scheduling and FU selection: Operations are ordered within each poset such that the 
operation that has all required input data available at the earliest clock cycle has first Pt:ior
ity otherwise priority is to the operations of a type with higher Busy Time BT= (N1FUI 
MFU)*DFU, where DFU is the number of clock cycles it takes to execute an operation of 
that type on the FU. For the operation with highest priority, the binding is done to the 
selected FU. The selection of the FU for binding is done based on a best fit of the data 
available time (this is similar to bin-packing heuristics) as shown in Figure 17, where four 
different situations of data available times (A-D) are shown and the FU selected is shown. 

FUl 

FU2 

FU3 

A B 
Figure 17: FU selection. 

D • III 

IdleFUTime 
ReservedFU 
Time 
Operation 
to bind 

A==FU2 C==FU3(FUl) 
B=FUI D==FU3 

For situation C, ifFUI is selected then a large idle time on FUI is introduced. The heuris
tic used in SPAID-X allows for a small postponement of binding the operation if a large 
idle time can be reclaimed. A fixed ratio (typically 3-10) between idle time and postponed 
time is used to determine the FU selection. 

Bus reservations: Before binding an operation to a selected FU, the input variables to the 
operations have to be transferred on the busses from storage to the FU inputs. Similarly 
after the operation is bound the output variables have to be transferred back through the 
busses to storage. In this binding phase, our assumption is that each edge of the SFG is 
represented by a master register that has access to all the busses in the system and in turn 
all FU inputs or outputs have access to all the busses. Therefore, it only matters that any 
one bus is not reserved and can be used by a variable for transfer at a specific clock cycle. 
Specific assignments of transfers to specific busses come at a later stage in the architecture 
optimization. What is only needed at that point is to reserve a maximum of NB different 
variable transfers at any clock phase. 

A complicating factor in bus reservation is that some of the operation nodes in the SFG 
can have quite a large out-degree (specially for a folded loop graph because of the added 
wrap_edges). These edges represent variables with identical values or mutually exclusive 
values (in case of wrap_edges in folded graphs). Moreover, when more than one edge 
have the same input of an operation node as a destination then these transfers are mutually 
exclusive either because of conditional execution or of being wrap_edges of a folded 
graph. This possibility of occurrence of large in-degree or out-degree of nodes has to be 
taken into account when doing variable transfers to bus reservations and bindings to 
account for identical or mutually exclusive variables. 
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For the set of FUs and NB busses assumed, the synthesis proceeds by maintaining a reser
vation table for all FUs, and for each read and write clock phase a data-transfer reservation 
list. The data-transfer reservation list is maintained to have the following properties at 
each read or write system clock phase: 

1. Maximum NB data transfers with different values (i.e different source operations). 

2. Mutually exclusive transfers count as one transfer. 

3. Total number of transfers (identical, mutually exclusive or other-wise) at any clock is 
bounded by NB + SK. SK is a slack variable with a value up to the maximum out/in 
degree of the folded graph. SK is a parameter to ensure an architecture optimization 
that results into only NB register files as discussed in section 6.3. 

4. Total number of wrap edges transfers with different values is bounded by NM. NM is 
chosen to be the desired number of RAM modules connected to the busses. NM =< NB. 
This is because wrap_edge variables are typically assigned to the RAMs. 

5. If a reservation for a bus transfer is attempted at the current cycle and any of the above 
bounds is reached, the next cycle is tried. If this transfer is for the first input variable to 
an operation, the operation is postponed. If it is the next input variable or an output 
variable from the operation, the operation execution time on the FU is stretched by one 
cycle. This variable operation execution time is only possible in this style of 
architectures because data is buffered at the input of the FU s which is not the case with 
random topology architectures. 

The procedure for scheduling and binding operations is then briefly: For each member of a 
poset of operations select the FU and find its first available clock time Tj av.' For all edges 
to which this operation is a destination, reserve a place on the read reservation lists starting 
at Tj av to get Treserved' Bind the operation to the FU starting at Treserved' Reserve the FU 
table-and find an output data available clock To av from the FU. For all edges to which the 
operation is a source, reserve a place on the Write reservation lists. It is evident that no 
binding of data transfers to specific busses are done in this scheduling step. The maximum 
clock cycle count resulting from scheduling all operations in all posets is Texec' 

6.3 Data Transfer Assignment to a Minimum Number of Busses 

The next step in the synthesis procedure is to bind the data transfers to specific busses. A 
number of issues can arise in this binding step that can complicate control or result in 
using more than NB busses. Assigning data transfers to busses is a bipartite coloring prob
lem, where the bipartite edges are the data-transfers corresponding to the edges of the SFG 
and its nodes are the read nodes (r-nodes) and write nodes (w-nodes) assigned to these 
transfers in the scheduling. Assigning each edge a color (corresponding to a bus) such that 
on any r-node or w-node all edges with different data values are assigned a different color 
(bus) is a solution to the bus assignment problem. 

Although it is guaranteed from the scheduling that the maximum number of edges carry
ing different data values is NB, the degree of the bipartite nodes can be (NB+SK) which 
may be much larger than NB. In graph theory, the maximum degree of a bipartite graph 



www.manaraa.com

113 

detennines the number of colors used under the condition that all edges at every node con
flict and hence are colored differently. We do not require that condition in our case of 
bipartite coloring, since the edges of the SFG with the same destination operation (mutu
ally exclusive) or the same source operation (equal value or mutually exclusive) can share 
the same read or write node of the bipartite graph and can be assigned the same color 
(bus). Since we guarantee from the scheduling that a maximum number of conflicts at any 
r(w)-node is NB, we should be able to color the bipartite graph using NB colors. This is 
not generally guaranteed, since one can easily devise very tight bipartite graphs with only 
NB conflicts and (NB+SK) degree which require more than NB colors. We also have some 
desired coloring situations that can arise in hardware, for example, all edges that corre
spond to constant values may be assigned to one bus so that one ROM can be used. The 
problem in this case is to color the bipartite so that the following conditions are satisfied: 

1. All edges sharing a read node that have their source operation a constant node should 
be assigned a specific bus (if desired). 

2. All edges sharing a read node and having the same destination operation should be 
assigned one bus (color). 

3. All edges having the same source operation should be assigned one bus if possible. 

4. Minimum number of busses (colors) have to be used for all data transfers. 

Condition 1 ensures that constants are grouped on one bus to minimize constant duplica
tion hence ROM storage. The bus used should be different from other busses used for 
wrap_edges if constants are to be grouped in a separate ROM. If condition 2 is violated, 
then for different iterations of the inner loop or for different branches of a conditional exe
cution, the FU executing the destination operation will have to load data in its input from 
more than one bus. This requires either the data-path controller to be iteration/condition 
dependent or a data active bit to be attached to each bus and produced by the MAG gener
ating the address for the valid data in the current iteration. In both cases this results in con
trol overhead, hence it is desirable to eliminate that from occurring. If condition3 is 
violated, then data duplication will exist in the storage (same value on two busses or 
more). This is specially critical for wrap_edges since they appear as one edge in the graph 
but in fact they represent data values in all iteration the edge is active. Data duplication for 
these edges is magnified by the multiplicity of list_oLalUndices associated with that 
edge which can result in significant storage over head. Condition 3 minimizes this occur
rence. The last condition is an optimality condition. Note that these conditions result in a 
colored bipartite graph which has edges with same colors at the same r(w)-nodes. 

Modified Bipartite Coloring Algorithm: The algorithm used for bus assignment while 
satisfying the above conditions is described in Figure 18. The tenninology used in that 
algorithm is given in the following. A non incident color on a node is a color not assigned 
to the already colored edges or a color of an edge that does not conflict 1 with current edge. 
Colors A and B may be the same. Procedure select always tries to make A and B the same 
as a first choice. Procedure Select Best can be switched between different heuristics; a) 

I. No conllict occurs if the edges have same source node, same destination node or are mutually exclusive 
in conditional branches. 
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Ordered (greedy) which skews bus transfers to re-use already used busses. This heuristic 
results in some busses being barely used which helps further storage optimization (section 
6.7) that re-map these transfers into fewer RAMs, b) Least used bus which balances bus 
transfers on all busses which can result in equal register file sizes. c) Random selection 
helps as a comparison heuristic with a &b. Procedure Augment graph succeeds if A and 
B are the same. If A and B are not the same then a graph S that starts at the w(r)-node and 
contains all A and B colored edges is formed. All edge colors in S are interchanged. If S 
contains a path to the r(w)-node it/ails and S is then reduced to SR by deleting all nodes 
having edges with only one A or one B color. This deletion reduces the size of the S graph 
and hence reduces the possibility of finding the starting r-node and w-node in a path of S. 
The algorithm attempts to satisfy the above mentioned conditions in their order. 

Initially assume number of busses NB 
Start: for (next edge in the GSFG with r-node and w-node 

with source operation Src and destination operation Dst) do 
if a separate bus for constants is required 
and if there exists Non-incident colors on r-node 
and one can select a color A from ROM colors allowed 
and one can select a color A from Non-incident colors on r-node 
then (color edge with A, go to start) 

else if there exists incident colors Ie on r-node of edges with same Dst operation 
and if there exists Non-incident colors on w-node 
and one can select a color A from Ie on r-node of edges with same Dst operation 
and one can select a color B from Non-incident colors on w-node 
and if augment graph at w-node interchanging A B succeeds 
then (color edge with A, go to start) 

else if there exists incident colors Ie on w-node of edges with same Src operation 
and if there exists Non-incident colors on r-node 
and one can select a color B from Ie on w-node of edges with same Src operation 
and one can select a color A from Non-incident colors on r-node 
and if augment graph starting at r-node interchanging A B succeeds 
then (color edge with B, go to start) 

else if there exists Non-incident colors on r-node 
and if there exists Non-incident colors on w-node 
and one can select best color A from Non-incident colors on r-node 
and one can select a color B from Non-incident colors on w-node 
and if augment graph at w-node interchanging A B succeeds 
then (color edge with A, go to start) 

else if there exists Non-incident colors on r-node 
and if there exists Non-incident colors on w-node 
and one can select best color A from Non-incident colors on r-node 
and one can select a color B from Non-incident colors on w-node 
and if augment graph starting at r-node interchanging A B succeeds 
then [color edge with B, go to start} 

else Increment number of busses by one then go to start 
Figure 18: Modified Bipartite Coloring 

Note that the final number of busses used may be greater than NR In a large number of 
runs with this modified bipartite algorithm (a number of multi-channel filters, FFfs and 
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Neural Network algorithms of different sizes) condition ! and 2 were always satisfied, 
while condition 3 was violated (duplicated variables «10%) resulted) in very special 
cases specifically when SK was high (near the maximum degree of the SFG). In all these 
cases, reducing SK resulted in satisfying condition 3 without sacrifice in throughput. NB 
busses is usually achieved, but in few cases SK and NM had to be reduced to achieve NB 
with little sacrifice « 5%) in throughput. 

This algorithm ensures that at any r-node any two edges can have same color only if they 
occur in the same iteration or in all iterations and have same source operation. Two edges 
can also have the same color if they have the same destination operation (it does not mat
ter what their sources are as their iterations are different). But if edges have the same 
source operations that are at different iterations and have different destination operations 
that are at the same iteration and their r-node is the same, then they have to get different 
colors for the data to be transferred on different busses at the same time to different FUs. 
The complexity of this algorithm is worst case O(lEI2) where E is the number of edges in 
the folded graph. Our experience is that it runs on the average O(NB.IEI) It has been used 
with lEI = 5000 with time on Sparc! of <10 minutes in a PROLOG implementation. 

6.4 Data Storage Assignment 

Each of the variables of the GSFG given by the set E has been assigned a bus in the previ
ous step, the next step in the synthesis is to assign the variables to either the FU input reg
isters, register files or RAMs. 

FU input assignment: The maximum number of non-conflicting variables that can be 
written in a FU input register are first selected. Each of these variables gets written on a 
bus from a FU output and are written immediately (on that write phase) at the assigned FU 
input register. The algorithm to assign variables to FU input registers is as follows: 

1. Form a subset S of the variables E that are read by a FU input. Initialize the ordered set 
of variables assigned to that FU input register to P= ( }. 

2. Sort S on the left edge of the variable life-time. Initialize read time R= zero. 

3. Remove the first variable V from S to get S', if 'write time of V' is greater than or equal 
to R then add V to P and update R='read time of V' else if the 'read time of V' is less 
than R then replace the top (last entry) of P with that variable and update R ='read time 
of V' else go-to (4). 

4. S = S', if S=(} go-to (5) else go-to (3). 

5. Go to (1) until all FU input registers are assigned. 

Step 3 ensures that all variables with single cycle life times and the maximum number of 
variables with the life time that can use a FU input register are selected. It also ensures that 
a value written in the FU input register is not over-written by another value before it is 
consumed by the FU. Subtracting the final P from E gives the set of variables ERM. 

RAMs and Register File Assignment: Each of the set of variables ERM is further 
assigned to either a RAM or a register file on each bus as described next. Input and output 
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variables are assigned to the allocated input and output ports. All wrap edges (variables 
and constants) are assigned to RAM. Inner _edges (variables and constants) are assigned to 
the register files. 

Splitting the data between RAM and register files when dealing with algorithms requiring 
large data storage is essential for the following reasons:-

1. Inner _edge variables (non-Separator) are re-used every iteration, hence they account 
for a very large number of accesses to storage in the execution of the entire iterations 
although they use few locations. Assigning them to register files reduces memory 
accesses which allows prefetching of variables, that in turn can result in merging and 
reducing the number of parallel RAMs required in the architecture (Prefetch and merge 
explained later). 

2. Inner _edge variables can have life-times as short as 2 cycles but wrap _edge variables 
have larger life times typically greater than Texec. Having variables with large life-times 
facilitates memory interleaving (an issue beyond our scope here). This is specifically 
interesting for image processing algorithms which require very high storage and speed. 

An example of the scheduling, bindings and register file or RAM assignment for the 24 
channel telecommunication filter is shown in Figure 19 where the bipartite coloring for the 
edges of that filter is also shown. The architecture uses a two stage pipelined multiplier, 

a 

WRITES 

", .. Il.\,J.~~ ~ 
a Write Variable From .. Transfcr Data 0 Read variable from 

FU output to DCSlination on the Bus from FU Source to FU input 

A-Bipartite Coloring B-Operations to FU bindings C-Data Transfers and Storage Bindings 

Figure 19:5cheduling and Binding For Telecom Filter 



www.manaraa.com

117 

two adder units (one cycle) and four busses. The number of cycles used in one channel 
iteration is 16, which is repeated 24 times for the different channels. Notice, for example, 
that the output of the first addition has an out-degree of five, at write clock 3 and read 
clocks (2,3,4,11,12) all have been assigned to Bus-I. A copy of that variable is assigned to 
the RFI (marked ** in Figure 9 and 19) to be used in the same cycle, and another copy to 
RAMI (marked *, corresponds to the wrap_edge of Separator type) to be used after 23 
other iterations for the rest of the channels. Figure 19.b shows also that an operation can 
take more than its minimum required time if busses are not available. For example, on 
adder#l, between clock 12 and 14, an addition takes 3 cycles (rather than one) because of 
bus contention, as evident from the bipartite graph (Figure 19.a) for these cycles. 

Register file optimization: A variable is alive between its write time and its read time. 
The variables with non overlapping life-times in each RAM or register files are grouped 
together to re-use a single register storage. The register minimization problem in general is 
recognized as a circular arc graph (CAG) coloring problem rather than an interval graph 
coloring as some synthesis tools advocate. The reason for this is that Separator edges or 
wrap edges need to store the variables from one sample period or iteration to the next. The 
life-time of these variables have a read clock time which is less or equal to the write clock 
time during one iteration. The coloring of the CAG is an NP-Complete problem while the 
interval graph can be colored optimally in polynomial time O(E*log(E» [21]. For exam
ple, in Figure 20 data storages are shown, where variable A (inner edge) does not overlap 
with register B (Separator or wrap edge). Typical synthesis systems would cut all separa
tor edges and assign each a register and then color the inner edges as an interval graph 

In 
. bl rm · A :C r:-~m' ner vana es r. 0 

Separator variables~~ _ B. • 
or wrap edges ~J :--- • 

Iteration end 
Figure 20: Variable Life times form a CAG 

with the left edge algorithm where for this example six hardware registers would be allo
cated; three for the separator variables and three for the inner variables. 

The heuristic used in SPAID-X results in a number of colors which satisfies the best 
known upper bound for the colors, which is equal to the size of the minimum clique plus 
the size of the maximum clique of the CAG [24]. The heuristic for coloring is done by 
finding a minimum clique and cutting it from the CAG (in our example the clique is the 
single variable C). The remaining graph is an interval graph that starts from the cut-set line 
and loops around the iteration end and back to the cut-set line. This is colored optimally 
using the left edge algorithm. The cut-set (variable C) is then colored in a non-conflicting 
color. This procedure is O(E*logE), but it results for our example into allocating only 3 
registers as indicated with the number assignments in Figure 20. 

The left edge algorithm can be summarized as follows. 

1. Assume that an infinite number of registers are available. Each register I is assigned a 
variable R1Iast=0. 

2. Sort variables on the write time into a list L., O(E*LogE). 
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3. For each variable (in order) in L with write time W and read time R assign a register 1 
such that its R\ast < W, update R\ast= R. 

4. All registers with R1ast>O are allocated in the hardware. 

The procedure for finding the minimum clique, proceeds by finding for each clock cycle 
the number of registers that overlap and runs in O(Texec *E). The minimum overlap is 
found in O(E) by a simple search. Then a renaming of reads and writes is done in O(E) to 
prepare for the left edge coloring. The left-edge coloring is done as above in O(E logE). 
The cut-set is colored by matching each variable of the cut-set to the set of empty intervals 
of the colored interval graph. Each member of the set of empty intervals is defined by the 
first write clock and last read clock of each allocated register in the interval graph. The 
matching is done by generating a bipartite graph with two sets of nodes, the first are the 
variables of the cut-set and the other is the set of empty intervals. Its edges define a 
compatibility relation when the variable fits in the empty interval. A bipartite maximal 
matching algorithm (using augmenting paths) is used and runs in O(R*CE2) where CE is 
the number of variables in the cut-set and R is the number of registers allocated for the 
interval graph. 

Mapping RAM Access to Ports: To demonstrate how prefetch of RAM data works to 
allow for re-mapping of RAM data transfers from the busses to the ports, we show the 
RAM data transfers for the FFT inner loop (for a double butterfly) before mapping in Fig
ure 21.a where 4 busses with direct interface to RAMs are used. The value of X (depth of 
FIFO Figure 14.b) is 2 for this example. Figure 21.b shows the port data transfers after 
mapping bus transfers to two ports connected to two RAMs through memory interface as 
in Figure 21.b. 

@ Bus/ Port '*' Bu~/ Port 
W Read U Wnte 

(b) 

Figure 21: Memory accesses from the busses (a) and 
re-assignment of the memory accesses through the ports (b). 
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Note that memory access on bus 3 and 4 are under utilized. All the reads and writes have 
been re-mapped on empty clocks (example; memory reads C and D in Figure 21) or on 
clocks which carry equal value data (for example, memory writes A and B in Figure 21) or 
are mutually exclusive (used in different instances of the inner loop iteration). Note that 
memory reads C and D have been prefetched in the previous iteration. The data resides on 
the bus FIFO until it is read from the bus. 

The algorithm that is used to perform the re-mapping and merging of the data transfers on 
NB busses through ports to NM memory modules is given next, where Z is the minimum 
data life time and a set of ports Ps equal in number to the busses is initially assumed:-

1. Sort the busses such that the bus with largest number of memory accesses is first. 

2. Sort all variables assigned to memory on each bus according to their read times 
(smaller read times first). 

3. Initialize the FIFO read cycles RIFIFO' on each bus Bus-I, to a large negative number. 

4. For each bus Bus-I (in the sorted order) and for each read time Rd on Bus-I (in the 
sorted order) do the following:- { 

Find all variables Vs that have the same read time Rd. 

Find the maximum W max of the set W s of all the write times of V s. 

Find the first clock XIFIFO that does not fill the FIFO (with depth X) on bus-I. 

Set a read clock limit RL as the larger value of: XIFIFO' R1FIFO and (W max-Texec + Z). 

Select a port P from Ps until a port is found that satisfies the conditions: (a) an empty 
or non conflicting write clocks exist for all Ws AND (b) an empty pre/etch read time 
P rd exists between RL and Rd inclusive; THEN re-map all variables in V to P with 
new read time pJd and set R1FIFO = pJd + 1. } 

5. The number of ports used is equal to the number of memory modules NM. 

The writes clocks with variables that have equal value or are mutually exclusive do not 
conflict. Also note that the selection of ports is done first on the used ports and if non of 
these ports satisfies conditions (a) and (b) then an unused port is selected. There are two 
options provided when selecting a used port; 1) ordered(greedy) which selects the first 
port in a specified order which usually results with less number of ports. 2) least_used_
port which keeps track of the used ports and selects the one with least number of read and 
write access, this tends to balance RAM sizes. 

The algorithm running time is O(lEI.NB.NM) as lEI variables are re-mapped and all busses 
and ports may be exhaustively tried. The algorithm is guaranteed to find a port assignment 
since the worst case is to have no reduction in number of RAMs. Note that in Step 4, in 
addition to a an empty prefetch read time a non-conflicting read time could be used (non
conflicting on read means that data are mutually exclusive, i.e. having the same destina
tion operation in the folded graph). Although this is more flexible and may result in better 
merging, it requires the main controller (for the memory interface) to be iteration depen
dent to redirect in each iteration the ports to the appropriate bus.This is disallowed in order 
to achieve an iteration independent main controller. With this restriction in step 4, for each 
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clock cycle only the same bus is connected to the same port in all iterations. Note that the 
resulting merging into 2 RAMs is optimal, in a sense that 171 different memory reads in 
13 clock cycles cannot be done using only one RAM. 

6.5 Main Controller Specification 

The main controller shown in Figure 22.a has a control word that is generated every sys
tem phase (read phase elll and write phase ell2 of the system cycle) and consists of the fol
lowing fields: 

1. 1. Control for the data-path consisting of: a-Address for each register file. b- Control for 
each FU input and output bus selector and FU mode. c- Control for memory interface. 

2. 2. A control word for each MAG (MAGJield). 

3. 3- A next address generation (NAG) field consisting of: a- Branch status bit (branch! 
increment). b- A next address generation offset index. 

The clocking is done with two non overlapping clocks Cl and C2 as shown in Figure 22.b. 
Level sensitive latches are assumed. A system cycle contains two Cl or C2 clock cycles. 

Increment 
Loop Counter 

LaslLoop 

ranc talus 

MicroCode Control 
Memory (MCM) 

To 
MAGs 

Figure 22: Main Controller (a) and clocking scheme (b) 

(a) 

(b) 

A system cycle is divided into four events (E l-E4). For the current system cycle executing 
the current set of data transfers instruction (I), the fetch of that instruction begins in 
(E3,E4) of system cycle 1-1 and the data transfers complete in system cycle I (EI-E4). 

1. 16 different reads is more accurate, since 2 of these reads are mutually exclusive. 
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Instruction I overlaps with instruction 1+ 1 first control word fetch as shown in Figure 22.b. 
The details of the execution in each event is also shown. 

Note that in event E2, the data read from the register files or RAM interface is latched in 
the FU input registers. The operation starts executing once data are stable on the FU input. 
For a one cycle operation, the execution spans part of E2, E3 and E4. In E4, the data prop
agates on the bus and gets written on the falling edge of C2 (end of E4) in the register file, 
RAM interface or FU input register. For an N cycle operation, an extra N-l system cycles 
are added to the execution time of the operation. 

For non-conditional or non-looped execution, the next address generation (NAG) block 
simply increments the current PC. In that case, the next address offset look up table 
(NAO-LUT) produces an increment value of 1. In the last instruction of a loop and if Last 
Loop is not active, the branch status indicates (branch) and the PC Offset index indicates 
an index to the negative branch offset to repeat the loop. If Last Loop is active then NAO
LUT produces a branch offset to the code of the next Block Node in the hierarchical 
GSFG (could be simply an increment of 1). A similar operation is done for conditional 
execution. When the branch status indicates (branch), the Condition code and the PC 
Offset index determine the branch offset to the next code. The encoding method for the PC 
offset index depends on the code address mappings in MCM and the details are beyond the 
scope of this chapter. 

The choice of the MAG Jield encoding can affect the MAG controller size. We use a 
multi-valued symbolic encoding for this field. On the read phase either the destination 
operation input name (Dst_name) or one of the mutually exclusive edge names 
(edge_name) can be used as the symbol. On the write phase either the source operation 
output name (Src_name) or one of the edge names can be used as the encoding symbol. 
The use of either the operation names or the edge names can result in less number of 
symbol names depending on the GSFG G. Since the number of symbols affect the main 
controller size as well as the MAG size, we have the option in SPAID-X to generate both. 

6.6 MAG Controller Specification 

The memory address generation (MAG) for the RAM connected to each port is a combi
national logic block. The input--specification of the MAG have the following fields as 
shown in Figure 23: 

1. l-ReadlWrite (<1>1) bit. 

2. 2- Loop index fields. 

3. 3-A symbolic MAG field from the main controller (as explained above). 

The output-specification is the corresponding encoding of the address location of the vari
able in the RAM. A symbolic encoding (ram_location) is generated for the output specifi
cation. The MAG can be designed as multiple level logic network, a PLA, or as a user 
defined specific address arithmetic unit (AAU) that maps the Indices and the MAG field to 
a RAM address. When such an AAU is used then it is assumed that a specific mapping is 
available from the variables to an encoded address space. In absence of a user defined 
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MAG, logic synthesis procedures are used to generate the logic block. The input-specifi
cation is generated for both the read and write phases for each wrap_edge in G and for 
each member of the list _oLalUndices of that edge. 

Figure 23:Interface of Memory Address Generation (MAG) for Port-I 

MAG Synthesis: The MAG is defined as a list of elements = [input-specification, out
put specification], one for each read and write operation to the RAM. Each element is 
detailed into symbolic fields; for example for the FFf example with two Indices:- [[RIW, 
Cindex,J_index,MAG_field], [ram_location]]. We have applied the tool NOVA [15] for 
optimal encoding of the MAG_field symbolic names. All other symbolic fields were heu
ristically assigned to ascending bit encoding starting from an all zeros code. The MAG 
logic is then synthesized using misII [25] to obtain a multi-level logic implementation. 

6.7 RAM Optimization 

Initially we flatten all the wrap_edges of G. This is done by generating for each wrap_edge 
and for all members of list_of_all_indices of that wrap_edge, a set of variables with differ
ent life times (read and write clocks) calculated knowing the sequence in which the Indi
ces are generated and Texec. 

RAM optimization does not essentially imply that only the number of locations is mini
mized. External or embedded fixed module RAMs have typically 2m locations, therefore 
the number of locations used have to be compared in that context. Moreover, when a set of 
data variables S with non-overlapping life-times are grouped into a location with a sym
bolic encoding (ram_location) then for this output specification of the MAG a number of 
input-specifications with different indices corresponding to the different variables sharing 
the location are generated. The best grouping of variables does not only depend on 
decreasing the RAM locations but also on decreasing the MAG size. The MAG size can 
decrease if large sub-cubes of the input-constraints can be found[14]. Because of such 
inter-relationship between the variable assignment to location, address encoding and input 
encoding, the problem of minimizing both the RAM and MAG size is quite complex. 

We propose two variations in variable assignments to RAM locations which have resulted 
in a good improvement in the size of the generated MAG. The two alternatives are: 1) 
Restrict all variables that have the same source operation output in the graph to be mini
mized together. 2) Restrict all variables that have the same destination operation input in 
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the folded graph to be minimized together. If the MAG field symbolic encoding uses Src_
name and Dst_name then these restrictions ensure that there is more likelihood that the 
input-specification with the same Src_name or Dscname would share the same location 
(output-specification) which reduces the number of product terms in MAG after logic 
minimization. The procedure for memory minimization that takes these restrictions into 
account is based on the previous left-edge algorithm. The procedure in addition to check
ing for no-overlap of the life-time of variables that share a ram _location, it also checks for 
these variables for a common source operation (src restricted heuristic) or a common des
tination operation (dst restricted heuristic) to allow merging them in one ram_location. 

It is also possible to define a memory location assignment and an encoding for the vari
ables based on a single memory space assumption. For an architecture with more than one 
RAM, the same memory space is mapped on all RAMs. This results in redundant memory 
locations but it is assumed that such an assignment has a corresponding MAG architecture 
with efficient size. This is true especially for large address space RAMs as has been used 
in the Cathedral tools. Nevertheless, automating this step efficiently remains a point of 
future research. 

Re-Synthesis of port mapping and code assignments: We have found that 
when the difference between the encoded cover resulting from the NOVA encoding is 
much larger (> 50%) than the multi-valued cover that there is always room for improve
ment in the size of the MAG by changing the heuristics in three areas:-

1. The port assignment heuristics (greedy or least_used), 

2. The MAG field symbolic name choice (edge_name, SrC/Dst_name),. 

3. RAM location symbolic assignment heuristic (Src or Dst restricted). 

Moreover the number of heuristic choices for NOVA itself and the other symbolic fields is 
large which presents another dimension for re-synthesis. In Section 7, we show some 
results for the application of these heuristics. 

7.0 EXPERIMENTS USING SPAID-X 

7.1 Single and Multi-Channel Filters 

Multi-Channel filters:- SPAID-X synthesis results are first demonstrated for the synthesis 
of multi-channel filters. The first example, which is a 24 channel filter from an industrial 
telecommunication application, is shown in Figure 7.b. The second example is the elliptic 
filter bench mark shown in Figure 7.a which was modified to work on 24 channels. 

For 24 channels, the unfolded filter is 24 parallel filters. Hence, the folding is trivial and 
results in the same filter with only the separator edges being folded and replaced with 
wrap_edges with a proper list_oLall_indeces. We synthesized both filters for a large num
ber of architectures. The architectures synthesized are based on using a pipelined multi
plier with a delay of 2 cycles and initiation every cycle and an adder that executes an 
addition in one cycle as our FU s. 
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SPAID X 

ADDER/SUB/ABS 1 1 1 1 2 2 2 3 3 3 

MULTIPLIER 1 1 1 1 1 1 2 2 2 2 

BUSSES * 1 2 3 4 4 5 6/4 4 6/5 7/5 

E RAM Distribution* 7 3,4 3,4 2,5 2,5 2,5 1,3,3 2,5 1,3,3 1,3,3 
L # of RAMs/Ports 1 2 2 2 2 2 3 2 3 3 L 
I Registers in RegFile 9 11 12 13 9 11 11 7 11 8 
p 
T Mux.Ips/Bus Driver 4/2 7/5 10/5 12/7 18/1 19/1 27/1 26/1 33/2 31/2 
I 
C Sample Period 68 34 31 29 20 18 18 20 17 16 

T RAM Distribution 8 6,2 7,2 5,3 5,3 5,3 5,3 5,3 5,3 4,2,2 

E # of RAMs/Ports 1/1 2/2 2/2 2/2 3/2 3/2 3/2 3/2 4/2 4/3 
L Registers in RegFile 11 11 13 12 9 8 10 9 7 7 c 

14f1( 0 Mux.Ips/Bus Driver 4/2 8/4 10/6 11/6 16/10 21/1 26/1 26/1 26/16 

M Sample Period 50 25 21 19 16 16 15 14 13 13 

TABLE 1. Multi-Channel Filter Architecture Search. 

Table 1 shows a large assembly of results obtained for these filter. In this table, for the 
number of busses row (marked *), the second number indicates the maximum number of 
busses used for the telecom filter while the RAM distribution row (marked **) the number 
of words per RAM per channel of filter is shown. Note that the row with the number of 
ports shows that a reduction of the number of RAMs by prefetching is always achieved. 
We have used SK values for these filters between 3 and 7 to get best results. In some 
instances, where SK is large, an extra bus above NB would be required to find a bipartite 
coloring. We used NM between 2 and 4 to achieve the above results. For NM=2, more 
cycles (1-3) are sometimes added to the Texec of the case with NM=NB. The number of 
ports achieved is always less than or equal to NM+ 1. For example, the elliptic filter with 
24 channels and a data-path with 2 adders, one multiplier and four busses, two ports are 
used each connected to a RAM. The number of locations in RAMl=120, and in 
RAM2=48 which is the minimum. The size of the MAG for RAM-l was 119 product 
terms and for RAM2 was 8 product terms. For all the examples shown in Table 1 the min
imum number of storage locations were achieved. This means that no data duplication was 
present. 

Design space search: In order to appreciate the design space search provided by a synthe
sis tool like SPAID-X, Figure 24 demonstrates the Area versus Texec' Area versus Area*T 
and A*T2, trade offs for the above two 24 channel filters. The assumptions are that the 
multiplier area is five times the adder area, the adder five times that of a register in the reg
ister files and a register in the register files costs twice a memory location in the RAM. The 
figures are normalized to the minimum architecture. In sp-ite both filters having largely dif
ferent structures, the same optimum architecture (in AT2 sense) with 2 adders, one pipe-
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lined multiplier and 4 busses resulted. With actual areas and delays, such a design space 

Telecom 1 'T 1.00 
Telecom. 1 :A *T 0.90 
~2 0.80 

E l1jptjC"T 

EllipticA *T1\2 

O Optimal 
Architectures 

0.70 
0.60 
0.50 
0040 
0.30 
0.20 
0.10 
0.00 

Figure 24: Area-Execution time Trade-offs in 24-channel Filters 

search can actually be used to decide on the best architecture for a core data-path to be 
added and supported in a VLSI design library. 

Unfolding transformations: An unfolding of k=2 was applied to the telecom filter. For an 
architecture with one adder, one multiplier and four busses, the unfolding transformation 
reduced the execution time from 38 cycles to 35 cycles for two consecutive iterations. 
Appreciable Texec reductions were not achieved without the use of subsequent local trans
formations. For the elliptic filter, for the architecture with 3 adders, 2 multipliers and 6 
busses, unfolding (k=2) and local transformations resulted in a 15 cycle solution. 

Single channel comparisons with random topology architectures: Although the results 
shown in Table 1 are for the best architectures for a multiple channel filter, the results for a 
single channel filter are very similar. As other work did not consider multiple channel 
implementation, we compare only our inner loop Texec (corresponds to one channel execu
tion time) in Table 1 with others. With ALPS[12], which optimally schedules the opera
tions, we obtain identical results for all reported architectures except that for an 
architecture with 1 multiplier 1 Adder and 4 busses we get 29 clock cycles and ALPS 28 
cycles. ALPS achieves 17 cycles for 2 adders and 2 multipliers, we get 17 for 3 adders and 
2 multipliers and 18 with 2 adders, 1 multiplier and 5 busses. The other aspects of the 
design such as the number of mux inputs, tri-state outputs or the number of registers, is 
very difficult to compare since the numbers mean different things for different architec
tures. For example, the number of repisters in the register files in the SPAID-X architec
ture correspond to a RAM location while in the random topology architectures these 
registers are pipeline registers2, which probably have more than twice the area of the 
equivalent RAM storage for the same number of bits. Another factor affecting the storage 
area is the FU input registers. To give an indication of how storage performance of a 
SPAID-X architecture compares with a random topology one, we compare the architecture 
for a 2 adder, one multiplier, 19 cycle solution by HAL [9] to the SPAID-X architecture 
(without the memory interface) for a single channel elliptic filter. In HAL, 12 pipeline reg-

1. The register files in SPAID-X are implemented such that each bit storage requires only one latch. If a 
large number of registers are assigned to a file a fast RAM structure is used. 
2. In the pipeline register case each bit of storage requires two latches. A separate input and output connec
tion is required for the register. 
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isters were used. In SPAID-X, 11 register file locations are used in addition to five FU 
input registers. If one takes a RAM location to be one half a pipeline register area and a 
FU input register to be equal in area to a pipeline register, then the storage area is better for 
SPAID-X (by about 1.5 pipeline registers).The SPAID-X topology is shown in Figure 25. 
A major aspect of comparison in a bus based architecture is the number of busses and the 

c:::::J = Latch 

o 

In 

Figure 25: SPAID·X Linear Topology Architecture 
For a Single Channel Elliptic Filter Example 

maximum bus loading. In SPAID-X, five busses are used with a maximum loading of 5 tri
state driver outputs and 6 inputs, in HAL 6 busses are used with a maximum loading of 7 
tri-state outputs and one input. Typically, a tri-state output contributes much more than an 
input (3-10 times the capacitive load). Also, the maximum fan-out from a FU or register in 
SPAID-X is 5 while in HAL it is 7. These loadings reflect on the maximum clock speed. 
The total number of tri-state drivers in SPAID-X is 19, while in HAL it is 26. HAL uses an 
extra bus, while SPAID-X requires 5 muxes with 19 inputs. Registers are grouped into 
register files for the SPAID-X architecture, this reduces storage area but may add to the 
register access time as compared with the HAL architecture. Using the number of global 
nets (each global net has the full word-width with a fan-out of two or more) to determine 
the regularity of the architecture; the HAL architecture uses on top of the 6 busses 7 global 
nets while the SPAID-X architecture does not have any global net other than the 5 busses. 

7.2 A Stereo Hi-Fi Filter Chip Implementation 

In order to assess an architecture efficient layout, an actual layout implementation is 
essential. A VLSI chip was designed for a stereo HiFi wave digital filter using the SPAID
X architecture [23]. Equivalence transformations were used on that filter to replace all 
constant multiplications with CSD shift/add/subtract operations. With this transformation 
all multiplications were eliminated. A design space search was carried out, and based on 
the filter specification a 20-bit data path with two adder/subtracter FUs and one barrel 
shifter (with limited number of shift counts) were found to be sufficient in a two bus sys
tem. The amount of storage on each register file which is connected to each bus required 
for the data-path to support a number of different filter orders and sampling rates, was 
found to be 16 words. Hence, a total of (2*16*20=640 bits) storage is required. The I/O 
ports were required for interleaved input and output of both channels (16 bits). The chip 
was implemented in a 3-micron technology using pre-charged busses and static RAMs for 
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the register files. The clock frequency for this architecture was 14MHz. The data-path was 
bit sliced, where the two busses were routed over the cells. Full abutment was possible for 
all the data-path, which resulted in a very compact design. The chip floor plan is shown in 
Figure 26, and gives an indication of the regularity of the multiple bus architectures with 
an active area less than 10 mm2., 

Figure 26: Chip Floor Plan For a Two Bus Data-Path 
for a Stereo Hi-Fi Filter Chip 

7.3 The FFf Example 

This example demonstrates the handling of folded loops by SPAID-X. We also show that 
the size of the MAGs is reasonable for small/medium FFT sizes (up to 64 points). The 
folding was done by a PROLOG program that automatically generates the folded graph of 
any N-Point FFT. All the results shown are for the case of the double butterfly folded 
graph. The total number of cycles to execute the FFT is Ttotal=(N/4)*ln2 (N)*Texec, 
where N is the FFT order. For a 256 point complex FFT, CATIIEDRAL_II [13] produces 
an architecture that runs for 16,903 cycles using 2 multipliers with accumulators, 3 sepa
rate RAMs and 4 AAU (address arithmetic units for RAM address computation). In 
SPAID-X, for a data path with 2 adders and one multiplier, 2 RAMS for the storage and 
one (RAM or ROM) for the sine table we obtain Texec= 13 and Ttotal= 
64*8*13cycles=6,656 cycles. The hamming window is done in SPAID-X in 2*N cycles, 
which is done in conjunction with inputting the input-vector. The total execution time for 
an 256-FFT with windowing is 7,168 cycles. 

Table 2 gives detailed results on the size of the RAMs and controller size of MAG. For 
this table, two adders, one multiplier, four busses, one ROM, and two RAMs are used. The 
value of SK=3, NM=2 and the resulting Texec=13cycles. The number of product terms 
after using NOVA with default heuristic for state assignment is shown. Best results are 
shown after using different heuristics in port selection and symbolic encoding. From Table 
2, it is evident that the number of storage locations used is more than the minimum (2*N). 
For the 16-point FFT the extra storage is <50% and <25% for the others. 
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To show the effect of re-synthesis on reducing the MAG size, the 16 point-FFf example 
was re-synthesized with the option in RAM minimization (src restricted) allowing only 
the variables with same source node to share a location. The numbers between parenthesis 

MAG MAG MAG 
of RAM-I of RAM-2 of ROM 

FFT RAMI RAM2 NOVA# misII NOVA misII NOVA misII 
size #Iocs. #Iocs. PT gateslarea #PT gateslarea #PTs gateslarea 

16 29 20(16) 92(115) 1981517 18(76) 28170 27(27) 35188 

32 47 32 291 6971 1755 31 461109 54 1001264 

64 95 64 702 145313056 33 441 100 94 2151503 

128 187 128 1715 N/A 50 N/A 158 N/A 

TABLE 2. : FFT RAM Storage and MAG sIze 

indicate the numbers before reduction due to re-synthesis. In table 2, the size of the MAGs 
after applying the default "script" with misII and mapping to "mcnc.genlib". From the size 
of the MAGs it is clear that this technique is viable for small/medium size FFfs. For larger 
FFfs, the NOVA/misII encoding and synthesis is quite inefficient and better approaches 
should be devised. 

8.0 Conclusions 

In this chapter, we presented an architecture and synthesis methodology useful for signal 
processing algorithms requiring large data storage. Our approach is novel in terms of 
addressing both the issue of the memory hierarchy in high level synthesis with automated 
assignment of variables to multiple memories as well as data-path architecture synthesis 
with optimal throughputs. It was shown that the multiple bus architectures have excellent 
layout regularity properties for VLSI implementation and that algorithms with large stor
age are most suitable for this style of architecture, especially if the sampling rate is lower 
than the architecture clock. Through a number of practical examples, the design space 
search by using SPAID-X was shown to be useful to determine a range of architectural 
choices. The design space for a number of similar applications can also be used to deter
mine an optimal core data-path module that can be added to the current library, as we dem
onstrated with the Hi-Fi stereo data-path. 

The memory address encoding problem was attempted and a number of factors were 
shown to affect the design of memory generation. Examples showing these interactions 
were given and some heuristics were shown to obtain good results. This problem of mixed 
data-path and control synthesis is still under research. 

We have also briefly introduced a number of behavior transformations that are essential 
for any signal processing implementation environment. It was shown that by applying 
such transformations better throughputs and efficient architectures can be realized. 



www.manaraa.com

129 

The design experience gained from implementing the multiple bus architecture, has made 
us conclude that register file access time and bus delay over-heads become a significant 
factor in determining the system speed. Fortunately, implementation techniques exist for 
speeding up these delays by applying pre-charging and fast sensing techniques which have 
been applied in a number of commercial processors that are predominantly bus based 
architectures. An advantage of the multiple bus architecture is that large fan-out (global) 
networks other than the busses do not exist, which is not the case with random topology 
architecture. Large fan-out networks can result in large interconnection area over head as 
well as difficult estimation of the delays (and delay compensation) prior to floor-plan 
assignments. When a large number of variables are handled in random topology architec
tures, the number of global networks explode resulting in less area efficient layouts. On 
the other hand, for small storage, highly pipelined algorithms requiring sampling rates 
close to the minimum achievable clock rate in that technology, then the random topology 
architectures are most suitable. 

The multiple bus architecture was also used in neural network digital implementations, 
which was not presented in this chapter and is beyond its scope. Details of the issues 
involved could be found in [16]. It suffices to mention here that the multiple bus architec
ture was used in conjunction with complex, deeply pipelined FUs, that closely resemble 
random topology style data-paths, for such an application in order to achieve high effi
ciency of utilization and throughput as well as handling the large storage required by these 
algorithms. Another factor that comes to the advantage of using busses, is the use of 
advanced technologies and techniques, such as BiCMOS and low logic swing, which 
allow having fast delays on highly capacitively loaded busses with low power dissipation. 
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HYPER is a third generation high level synthesis system, targeted 
at numerically intensive applications. By shifting the emphasis from the 
traditional high level synthesis tasks (such as scheduling, assignment, 
allocation and module selection) to the domain of optimizing transforma
tions, new avenues for high level synthesis are opened. One of the most 
exciting among them, which probably has the largest impact on the qual
ity of the design, is to select and optimize the algorithms for a given appli
cation. 

The paper starts with a brief overview of the HYPER system, with 
special stress on the optimizing transformation methodology. After this, 
the paper concentrates on the exploration of the algorithmic design 
space. We show how HYPER can be used to guide and conduct a proper 
algorithmic selection process and how transformations in HYPER can 
improve the performance or cost of real life applications with orders of 
magnitude. 
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INTRODUCTION 

Motivation: Why yet another higher level synthesis 
system? 

High level synthesis has emerged as one of the most exciting and most 
challenging areas in CAD. It is both eagerly and reluctantly expected by the 
design community. Eagerly since it promises an increase in productivity, it 
opens new venues for designers and it relieves them of many mundane and 
tedious tasks, which are currently undertaken manually; reluctantly since it 
dictates a dramatic and drastic change in the way the design process is con
ducted. We have currently reached the point, where high level synthesis has to 
prove itself as one the most important and most influential CAD tools in 
design, or will slowly disappear as an exciting, but also dead end academic 
research avenue. 

While, of course, its destiny will ultimately be determined by the effec
tiveness and efficiency of the tools in industrial designs and their viability to 
compete with the manual design process, it is very instructive to look at the 
genealogy of high level synthesis. This approach enables us to fully leverage 
on already achieved successes and achievements and avoid some of the dan
gerous pitfalls, which prevented it from becoming a standard engineering tool 
at present. 

The identification of different generations in technological develop
ments is an uncertain undertaking and a classification according to different 
criteria appears often to be more natural. However, it seems that until recently 
there have been two major generations of high level synthesis systems. The 
first generation was developed by the researchers from the computer architec
ture community [Bar73]. Although initially targeted at RTL level synthesis, 
the focus switched later to high level synthesis. Many important results were 
obtained and almost all high level synthesis tasks were precisely defined and 
outlined; these include allocation, asSignment, scheduling, module selection, 
partitioning, transformations and interface design. Early researchers in the 
field accurately identified many most relevant issues and proposed the first 
approaches to address them. For example, the first papers already stressed the 
importance of design space exploration, which just recently has come again 
into the attention of both the high level synthesis and design communities. 
However, the supporting algorithmic and computing environments were of 
insufficient capability to support overly ambitious design tasks, such as 
microprocessor design. In the last phase of the first generation, great hopes 
were based on the use of artificial intelligence techniques. The success was 
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limited, however. At that point, a majority of researchers in high level synthe
sis field reached a consensus, that, without dramatic improvements in knowl
edge acquisition and manipulation techniques, automatic competitive design 
of general purpose computers is unlikely. This conclusion lead to the second 
generation of high level synthesis, which targets more restricted design areas 
and synthesis problems. 

The second generation is characterized by a more focused approach and 
greater attention to the solving of a few high level synthesis tasks. More than a 
hundred high level synthesis systems have been reported in the CAD, DSP, 
communication and circuits and systems literature [WaI91]. Despite the large 
number of systems and the variety of the application domains and the 
employed optimization techniques, there are striking similarities among many 
of them: the focus of the synthesis process is almost exclusively on the sched
uling, allocation and assignment tasks, although more recently partitioning 
and module selection have been drawing attention as well. 

While providing a clear insight in the nature of the problems and pro
ducing a wide variety of excellent solutions, the idea of focusing exclusively 
on isolated problems generates some monumental pitfalls. Tools were tested 
on a small set of academic benchmarks and optimized to outperform previ
ously published approaches ("the fifth order elliptical filter syndrome"). No 
attempts are made to validate the approaches and to assess their potential on 
real life examples. As a result, a clear vision of the actual cost of a design was 
lost. The cost of a design is rarely determined by the number of execution 
units (the "primary" optimization goal), but most often is set by the "second
ary" resources, such as registers, interconnect, control and input/output. 
Although background memory quite often dominates the cost of a system 
[DeM92, Pat90], it was only recently addressed in a few papers. Finally, while 
hierarchy has long been accepted as one of the keys to successful system 
design, it has only drawn marginal attention in the synthesis community. 

Compared with the effort spent on individual tasks, scant attention was 
paid to tool integration. We refer here not so much to software integration, but 
mainly to the way tools interact and communicate with each other and with 
the environment. Information feedback to the designer is limited, if existing. 
The relationShip of high level synthesis with respect to the overall system 
design problem is ill understood or not addressed at all. Designers have, how
ever, made clear that synthesis only makes sense when seen in a system con
text and in co-existence with other compilation tools, such as available or 
under development for programmable hardware and heterogeneous hardware/ 
software platforms [Pau92]. Finally, the organization of current synthesis 
tools is such that they offer scarce opportunity to address the requirements of 
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the next generation of CAD tools, such as computer aided algorithm selection 
and design 

In depth reviews of the state of the art in high level synthesis can be 
found in [McF90, WoI91b]. For an inspirational and fresh look at the current 
trends in high level synthesis and in CAD in general, please refer to [DeM92]. 

Notwithstanding the above observations, several systems have been 
designed, which transcend those problems and are successful in designing 
complex pilot designs. A number of them are currently making it to the com
mercial arena. The response from the design community is still muted, how
ever. Even if a system succeeds to proceed smoothly from a behavioral level 
description of an application to a layout, designers complain that the system 
does not offer any added value: at most, it performs a number of tasks they 
knew how to do anyhow and it does not offer any help in the most demanding 
design problems, such as the exploration of the architectural space. So, while 
the feasibility proof of concept has been demonstrated, the establishment of 
high level synthesis as a dominant or attractive design option is still pending. 
If high level synthesis wants to avoid the destiny of other research fields, 
which generated great expectations and even greater disappointments, it is 
essential that a number of those observations are successfully addressed. 

The HYPER high level synthesis system tries to address some of those 
issues and is based on two major thrusts: 

1) The only way high level synthesis can get an edge over current 
design approaches, is by identifying and treating optimization intensive tasks, 
which are difficult (or even impossible) to address manually due to the com
putational and logical complexity. We believe that optimizing transformations 
fall into that category. They help to transcend the limitations of the initial 
specification and can result in more dramatic reductions of the implementa
tion cost (be it area, speed or power) than any other synthesis task. Closely 
related to transformations is the estimation task, which helps to plot the design 
space and serves as an essential feedback to the designer. Finally, transforma
tions are the key link to the next layer in the design synthesis process, being 
algorithm design and selection. The latter is the main topic of this paper. It is 
important to notice that the use of algorithm selection and optimization use 
has not been previously addressed in the high level synthesis literature. 

2) The only other high level synthesis task, which can have even more 
dramatic influence on the overall quality of a design, is, surprisingly, the way 
the high level synthesis tools are organized and integrated. Although it is easy 
to notice that all high (and low) level synthesis tasks are interrelated, the 
majority of current day high level synthesis systems concentrate heavily on 
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individual tasks. Integrating these tools in an effective manner requires a glo
bal view on the goal to be achieved, which can only be offered by estimations. 
The HYPER synthesis manager has been described elsewhere in a detail 
[Rab90, Pot91a] and is out of the scope of this paper. 

Paper Organization 
The rest of the paper is organized in the following way. First, the 

HYPER system and its main components are briefly surveyed. Next, transfor
mations and their use in high level synthesis and in the HYPER system in par
ticular are discussed. Following section contains the most important material 
in the paper: how transformations can be used to efficiently and effectively 
select the best computational structure for a given behavioral description and 
set of goals and constraints. The detailed study of a real life example is pre
sented in this section. 

Finally, we conclude by outlining the issues which we consider as the 
most important directions in high level synthesis in general and in HYPER in 
particular. 

HYPER 

Real time applications in areas such as terrestrial, mobile and satellite 
communications, speech, image and video proceSSing, radar, sonar and com
puterized tomography often require high performance dedicated datapaths. 
The structure of the datapath is strongly correlated to the structure of the com
putations. The controller, if existing at all, is small and contains at most a few 
tens of states. Pipelining is often used to improve throughput performance. 

The synthesis of this type of architecture is an involved, meticulous and 
cumbersome process, which implies a strong need for sophisticated CAD tool 
support. The HYPER system addresses exactly this class of numerically 
intensive algorithms [Rab91]. A detailed desCription of the HYPER system 
and its toolset is given elsewhere [Rab91, Pot91a, Pot92b, Chu92 , Hoa92]. 
We wi1llimit our discussion to a presentation of the overall strategy and orga
nization and a review of the transformational techniques. 

The software organization of HYPER is shown in Figure 1. The input to 
the system is a description of application in a behavioral language, called 
Silage [HiI92]. Silage is an applicative Signal-flow language which is particu
larly effective for the specification of digital signal processing algorithms. 
The Silage description is translated into an intermediate CDFG (control data 
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flow graph) fonnat, which serves as the central repository, on which all syn
thesis tools are operating and all results are annotated. The tool library 
includes tasks, such as simulation, hardware module selection, transfonna
tions, allocation, assignment, scheduling and background memory manage
ment. The single most important future of HYPER is the synthesis manager 
program, which supports the exploration of the design space using classical 
high level synthesis tools, transformations and a set of estimation and feed
back infonnation tools. The synthesis manager uses a single global design 
quality measure, called the resource utilization, to direct the design space 
exploration. It also guides an ergonomic user interface, which facilitates user 
interactivity. 

Once a final result is obtained, HYPER maps the annotated CDFG into 
an architectural description, which is translated into layout using a silicon 
compiler. Currently, the Lager IV [Bro92] is used, but a VHDL interface to 
commercial R1L synthesis environments is provided as well. 

Transformations in HYPER 

Transformations: What? Why? How? 

As we already mentioned, the single most important feature of HYPER 
is the synthesis manager program. Although, the synthesis manager is capable 
of achieving implementations, which are optimal or close to optimal (accord
ing to the min-bounds predicted by the estimations), its power to compete 
with and outperfonn a human designer heavily depends on transfonnations. 
Transfonnations are alternations of the structure of a computation such that 
the behavior (the relationship between output and input data) is preserved. 
The impetus behind the application of transfonnations is the hope that the 
transformed computational structure might result in an implementation with 
improved perfonnance. As mentioned above, the perfonnance measure has 
many dimensions such as area, throughput, power, testability, fault-tolerance 
and 110 requirements. 

A more insightful definition is that transfonnations are elegant alge
braic identities and correctness preserving reorganizations of the computa
tional flow. This definition, as we will show later, is an excellent starting point 
to answer a number of important questions about transfonnations, and their 
role in high level synthesis. Those questions include the following: 
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(1) Which transfonnations to implement and support in a high level 
synthesis system? 

It has been recognized for a long time in the compiler community, and 
now becomes obvious in high level synthesis community too, that implement
ing and supporting a large set of transformations is a rewarding, but also 
tedious and overly meticulous effort [WoI92]. Precise answers to a number of 
complex issues have to be addressed, such as when and where to apply a 
transformation, how transfonnations interact, what side-effects are generated 
and what the global effects are of a locally applied transfonn ati on. Large 
transformation sets also impose numerous complex requirements on the data 
structures used for storing the CDFG. 

(2) How complete is the set of already implemented transfonnations? 

More than a hundred transfonnations have been proposed in the com
piler community alone. It is more than likely that the number of transforma
tions, which can be defined for high level synthesis, is substantially higher, 
this due to the additional degrees of freedom, the multi-dimensionality of the 
cost function and the demand for high quality solutions. The nature of compu
tation in an ASIC design is, furthennore, such that significantly more parallel
ism is generally available, compared to general purpose computation. This 
results from the fact that most ASICs (such as real time systems) operate on a 
semi-infinite stream of data and temporal parallelism is hence readily avail
able. 

Taking into account all the mentioned points, the important question 
when considering the introduction of a new transfonnation is one of diminish
ing return: do its benefits outweight the algorithmic and software implementa
tion efforts? 

(3) What are the limits on the effectiveness of transfonnations? 

As already demonstrated in several compilers and a few high level syn
thesis systems and illustrated extensively later in the paper, it is not rare that a 
transformation can result in an order of magnitude improvement in perfor
mance. The excitement about this spectacular improvement immediately trig
gers the following question: what is the real limit on the power of a 
transformation or set of transformations for a given algorithm. While several 
techniques have been developed to estimate the effect of the application of 
other high level synthesis tasks, only Simplistic, overly optimistic or pessimis
tic techniques have been proposed for transfonnations. It is our belief that no 
major progress on this difficult and important topic can be expected in the 
immediate future. 
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Transformations in High Level Synthesis 
The current state-of-the-art in transformations can be traced over sev

eral application areas: operational research, software compilers and in particu
lar software compilers for parallel computers, CAD, DSP ASIC and systolic 
array design, theoretical computer science, and numerical analysis and alge
bra. 

A detailed overview of the transformations and their use in the men
tioned fields can be found in [Pot91a]. We will restrict ourselves to an over
view of the application of transformations in the high level synthesis domain. 

Applying transformations in the high level synthesis process was first 
proposed in the late seventies [Sn07S, CasSO, Mir79, McFS3]. The most com
prehensive sets of transformations are described in [TriS7, WalS9, HarS9a, 
Bha90, Rab91]. Flamel [TriS7] uses five block level transformations (essen
tially 2 variants of loop merging and 3 forms of loop unrolling) followed by a 
greedy application of height reduction and constant folding. The goal is the 
minimization of the implementation time under area constraints, which is sig
nificantly simpler task than the problem where the hardware cost is optimized 
while time is the constraint. The reason for this is that in the former formula
tion a hierarchical problem can be solved optimally by optimizing each of the 
sub-functions individually. Although the optimization strategy is simple and 
at least partially greedy, impressive experimental improvements are achieved 
on 15 small examples. 

The System Architect's Workbench (SAW) [WaIS9] uses in-line expan
sion, dead code elimination, four types of selects (if-then-else transformations 
where the code is moved across boundaries imposed by the control structure) 
as well as pipelining mainly in order to support behavioral and structural par
titioning. SPAID [HarS9b] proposes the independent use of retiming (and 
pipelining as the special case of retiming), interleaving, replacement of multi
plication by a constant with add/shifts and algebraic transformations. Both 
SAW and SPAID are interactive frameworks where designer manually 
explores the design trade-offs using predefined transformation mechanisms. 
Hi-PASS, a CAD system for DSP architecture synthesis, efficiently uses bit 
level retiming in designs with no hardware sharing [Dun92]. 

Gyrczyc [GyrS4] was one of the first to discuss the effect of loop fold
ing. Several high level synthesis researches combine a few transformations 
(most often loop unrolling, software pipelining and pipelining) with schedul
ing. For example, Devadas [DevS9] combines scheduling with dynamic par
tial unwinding (unrolling) and functional pipelining with allocation, 
assignment, and scheduling using simulated annealing algorithm. Goossens 
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successfully treats [Go090] both single and nested loop folding (software 
pipelining) during scheduling. Hwang combines functional pipelining and 
loop winding with scheduling [Hwa91]. 

Besides the use of transformations in high level synthesis systems for 
computationally intensive computations and microprocessors, their successful 
application in the design of control dominated machines has recently been 
reported [WoI91a]. 

Pipelining is by far the most often applied transformation [Par88, 
Pau89]. Hartley combines pipelining and tree-high reduction (a special case 
of associativity), but his technique is applicable only to examples without 
feedbacks [Har89b]. Although pipelining is very powerful, it is not a transfor
mation in the strict sense, since it increases the algorithm latency. Its applica
tion domain is also often limited to non-recursive algorithms [Mes88]. 

Mechanisms of Transformations 

Although transformations can be used to optimize a wide variety of 
objective functions using an unlimited number of optimization approaches, 
transformations belong normally to a small set of classes. 

HYPER currently uses three types of transformations, according to their 
scope: 

(1) suboperationallevel transformations 
(2) basic block transformations 

(3) control structure transformations. 

The first type is based on the application of knowledge about the rela
tionship between the various operations in their hardware implementation, as 
well of internal structure of the computation. Very few transformations of this 
type are addressed in literature [Mas87, Dal89], and the most important trans
formation of this type in the DSP ASIC domain is substitution of multiplica
tion by add/shifts. This transformation has been used regularly in HYPER, 
often with a Significant improvements in both area and speed. When substitut
ing multiplications by add/shifts, HYPER uses the Canonical Signed Digit 
representation to minimize the number of newly introduced operations. 

The basic block transformations do not alter the control structure of a 
program and consist mainly of algebraic manipulations. This is in contrast 
with the third class, which modifies the structure and dependence of control 
operations such as conditionals, loops and subroutines. Since the number of 
combinations for both of them is unlimited, the number of transformations 



www.manaraa.com

141 

can be arbitrarily large. So, finding an effective and efficient subset is an 
important decision during the development of a high level synthesis system. 

Basic Block Transformations The majority of the numerically intensive 
computations can be interpreted within an algebraic structure, called afield. A 
field is a relatively simple structure, consisting of two basic operations defined 
with the aid of a few axioms. Those operations are most often called addition 
(denoted by +) and multiplication (denoted by *). In addition to the fact the 
field is closed for both addition and multiplication (i.e. for every a, b in the 
set, both c = a + band d = a * b are in the set.), the following properties are, 
per definition, valid: 

(1) Both addition and multiplication are associative operations. 
(2) Both addition and multiplication are commutative operations. 

(3) The distributive law is valid (Le. a * (b + c) = a * b + a * c). 
(4) Both addition and multiplication have identity elements. These 

elements, usually denoted by 0 and 1, are such that for any ele
ment a in the set the following statements are valid: a + 0 = a and 
a*l=a. 

(5) Both addition and multiplication have inverse elements. (For each 
element a in the set, there exist elements b and c in the set, such 
that a + b = 0, and a * c = 1.) 

Although a field is simple structure, it is also very powerful. A field is a 
set in which one can do "additions", subtractions", "multiplications", and 
"divisions". The most commonly used instances of fields are: R, the set of real 
numbers, C, the set of complex numbers, and Q the set of rational numbers. 
The vast majority of the computations in DSP and other numerically intensive 
applications are performed in some field. 

The application of algebraic transformations for the optimization of 
performance measure almost always translates into a computationally intrac
table optimization problem. To address this computational problem, a novel 
probabilistic sampling algorithm was introduced in HYPER. It uses the five 
mentioned axioms as basic moves. A crucial element of any optimization 
problem is the qualification of the cost function, which is both accurate and 
easy to compute. While this is relatively simple when the goal is to minimize 
the time, it is substantially more complex when the area is the measure to be 
minimized. An experimentally derived and statistically verified objective 
function has, therefore, been introduced to correlate the properties of a DCFG 
with the area of the final implementation. To simplify the number of moves, 
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the associativity and inverse element law have been combined into a general
ized associativity move. 

One should be aware of some important side-effects, related to alge
braic transformations such as associativity and distributivity. As a result of the 
finite word length representations, those transformations can result in deviat
ing or even non-correct solutions, when applied on actual hardware. A careful 
analysis of the obtained result (most often using fixed point simulation) is 
hence necessary. 

The associativity, commutativity, distributivity, identity and inverse ele
ment laws are sufficient to transform any computation in a field into any pos
sible, equivalent form. However, as even the high school algebraic experience 
implies, the explicit use of some composite transformations (algebraic theo
rems) can greatly help to achieve better structures faster. This is the reason 
why the basic transformation set is often augmented with other transforma
tions, such as factoring and common subexpression elimination and replica
tion, in compilers and high level synthesis tools. We are currently 
investigating which small set of algebraic theorems is amenable as a sufficient 
basis for transformations. 

Closely related to the above is the observation that the goal of the 
majority of the computations is not just to compute one output, but a set of 
outputs. This makes the identification of redundant and unnecessary computa
tions non-trivial. To handle those situations, a few more transformations come 
in useful. The most important transformations in this class are the common 
subexpression elimination and replication, constant propagation, dead code 
elimination and strength reduction [Ah077]. The treatment of common sub ex
presions is a difficult and involved problem, where the decision to replicate of 
eliminate a common subexpression is based on a trade-off between through
put and resource utilization [Pot92b]. While the optimal treatment of constant 
propagation and dead code elimination is an undecidable problem in the gen
eral case, a greedy algorithm often works well in DSP practice. An optimal 
solution is obtained when no conditionals are present. HYPER applies the 
greedy algorithm after the application of any other transformation to remove 
the dead code and the manifest expressions, generated by those manipula
tions. Strength reduction is often advocated in conjunction with loop transfor
mations and address calculation, where it is often generalized to value 
numbering [Wai84]. 

At the border between basic block and control structure transformations 
exists another important transformation, called retiming. Retiming is a con
ceptually simple, yet powerful transformation, which has been successfully 
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applied in several CAD areas. It is formally defined as the distributivity prop
erty of the delay operator over most other operators: when D is defined as the 
delay operator, the statement D(a) * D(b) is equivalent to D(a * b) and vice 
versa (where * is an arbitrary operation). More informally, the retiming trans
formation moves delays in a CDFG such that a particular objective function is 
optimized. Most often either the critical path or area of the implementation is 
targeted. When the former case, the Leiserson-Saxe retiming algorithm gener
ates the optimum solution in polynomial time [Lei91]. However, when area 
minimization is the goal, the optimization problem is NP-complete [Pot90]. 
Retiming is naturally defined in the form of a basic move (being a distributiv
ity move), it operates on the same level of granularity as the algebraic trans
formations and acts as an enabling and disabling transformation for those 
algebraic transformations. HYPER therefore treats retiming using the same 
framework, optimization algorithm and objective function. A detailed 
description of the treatment ofretiming in HYPER is presented in [Pot91b]. 

Closely associated with retiming is the pipelining transformation, prob
ably the most popular high level synthesis transformation. Although pipelin
ing is not a transformation in a strict sense as the temporal relationship 
between the outputs and inputs is changed, it is often used due to its capability 
to reduce the critical path in a graph with no feedback. Pipelining is easily 
related to retiming by the following observation: "Pipelining with N stages is 
equivalent to retiming where the number of delays on all inputs or all outputs, 
but not both, is increased by N'. 

HYPER provides separate optimization mechanisms for pipelining with 
a fixed and a flexible number of stages, and for various performance goals, 
such as throughput, area and power. 

Control Structure Transformations Control structure transformations 
restructure the control flow of a computational graph, as implied by loop, 
conditional and subroutine structures. In this area, most of the attention has 
been devoted to the exploration ofloop transformations, as it is widely 
recognized that this is where most of the parallelism is embodied. Therefore, 
this section will solely concentrate on this subject. 

As in the case of the basic block transformations, we tried to identify a 
small set of "axiomatic" loop transformations, from which all others (or at 
least the majority of them) can be constructed. The two major issues in the 
composition and the transformation of a control structure are (i) the partition
ing of the program into control sections and (ii) the determination of the tem
poral relationship between those units. A simple study indicates that the 
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following transformations are sufficient to support the partitioning part: loop 
unfolding (and its inverse transformation, loop folding), loop fusion (and its 
inverse, called loop fission), loop blocking, loop permutation, loop retiming 
and invariant code motion. The ordering of the partitioned units is effectively 
supported by the software loop pipelining and loop interleaving transforma
tions. A detailed description of all the mentioned transformations can be 
found in several standard compiler references [Aho77, Fis88]. It appears that 
the small set of transformations, mentioned above, is sufficient to support the 
wide spectrum of loop transformation, proposed in compiler literature. 

At present, HYPER supports only partial and full loop unfolding, loop 
expansion and software retiming and pipelining. The development, imple
mentation and support of other control structure transformations is under 
investigation. 

Transformation Ordering 

From previous applications in the areas of software compilation, logic 
synthesis and high levels synthesis, it was learned that the ordering of trans
formations is often the key factor in achieving their full potential. At each step 
of the optimization process, the system must select a transformation which is 
both legal and desirable. While the application of individual transformations 
has received a lot of attention and has yielded impressive results, barely any 
progress has been achieved in the area of transformation ordering. By far the 
most popular and widely used approach is a static ordering where the order of 
transformations is given a priori, most often in the form of a script. SCript 
development is almost always based on experience and extensive experimen
tation. This method has at least two drawbacks: it is a time consuming process 
which involves a lot of experimentation and the quality of the solution is 
strongly dependent upon the match between the application characteristics 
and the underlying strategy of the script. For well defined application areas, 
such as logic synthesis or linear digital signal processing, this approach has 
proven to be very effective. 

Another, often advocated, approach, is the "generate and test" technique 
[WoI91a]: explore all possible combinations of transformations. Although this 
method can be augmented with suitable impliCit enumeration techniques, its 
obvious drawback is a large run time, exponential in the number of transfor
mations. Another interesting approach, proposed recently, is to use a mathe
matical theory behind the ordering of some transformations. However, this 
method is limited only to a class ofloop transformations [WoI91a]. 
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HYPER supports two modes for operation ordering at present: the user 
guided mode and, the above mentioned, optimal scripts. In the user guided 
mode, the synthesis manager provides information to the user with respect to 
the bottlenecks in the design, their nature and the estimated effect of a trans
formation. A detailed description of this mode is given in [Rab90]. 

For several important sets of transformations and application domains, 
we achieved in defining simple and optimal transformation orderings, such 
that a particular cost function is minimized (or maximized) in polynomial 
time. This was, for instance, the case for the important class of linear compu
tations over a set of seven transformations (distributivity, associativity, com
mutativity, inverse element law, identity element law, dead code elimination 
and constant propagation) [Pot92b]. Even when unfolding is added to this 
class, we proved that an optimal sCript can be defined [Pot92b]. Currently, we 
are addressing the design of optimal scripts for other application areas and 
even wider sets of transformations. 

What Next in Transformations? 

After been studied for several centuries in mathematics and a few 
decades in the compiler domain, transformations are continuing to be an 
important research topic in those areas. Considering the considerably shorter 
history of transformations in high level synthesis, it is certain that they will be 
a topic of intense study for some time to come. 

In the area of numerically intensive applications, we expect that loop 
transformations supported by a loop dependency analysis (also called LCD) 
will be the primary tool to achieve an extra order of magnitude of perfor
mance improvement. The current probabilistic optimization algorithms, 
implemented in HYPER to support basic block transformations, can be sped 
up when supplemented with heuristics to target directly critical parts of the 
restructured CDFG. Increasingly background memory and liD management 
and design will be supported and optimized using transformations, which 
directly target this type of resources. 

Numerically intensive applications are being merged increasingly with 
non-numerical applications. A set of axiomatic and theorems based transfor
mations, which target non-numerical transformation will therefore become 
important. Important elements of this class are transformations related to full 
and partial ordering, set membership and string manipulation. We expect that 
transformations which target control dominated designs will gain popularity 
and prove their effectiveness. 
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The ordering of transfonnations and an even more close integration 
and combination with other high level synthesis and software compiler tasks 
[Gue92] will have a significant impact on the field. Finally, and we believe 
most importantly, transformations will evolve and serve as the basis for of a 
new field of algorithm design, selection and tuning. In the next section, we 
will demonstrate how the combination of algorithm selection and optimizing 
transformations can produce results which cannot be anticipated by even 
advanced human designers. 

ALGORITHM SELECTION AND 
PERFORMANCE IMPROVEMENT USING 
TRANSFORMATIONS 

Motivation 

Even a superficial, brief survey of the algorithm design research in sev
eral important application areas (such as numerical analysis, DSp, communi
cation and infonnation retrieval) reveals that a large variety of algorithms 
exist to address a single problem. 

Consider, for example, the problem of sorting. In addition to the con
ceptually simple selection, insertion and bubble sort, there exist several more 
subtle algorithms, such as quick sort and Batcher bitonic sort [Knu73]. For 
common matrix transfonnations, such as fast Fourier transform (FFf) and 
discrete cosine transfonn (DCT), which are often used in audio and video pro
cessing and many other digital processing areas, there exist dozens of other 
fast algorithms [Nus82, Rao90]. A variety of algorithms exist to solve a 
Toeplitz set of equations, which occurs in a large number of signal processing 
applications such as for instance speech coding. The most popular ones are 
the Levinson-Durbin, Trench, Barlekamp-Massey and Barlekamp-Massey 
recursive algorithms [Bla8S]. 

In some cases, there is an obvious superiority of one algorithm over oth
ers in tenns of perfonnance, in particular if one is interested only in asymp
totic computational complexity [Gar79]. More often the optimality of an 
algorithm depends upon additional constraints. Although the selection of the 
right algorithm for a targeted task has a major impact on the final quality of 
the design, this area is currently more art than science or engineering and 
designers almost exclusively rely on intuition instead of accurate quantitative 
procedures. This intuitive approach is however bound to break down. 
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Progresses in technology have increased the application complexity and have 
made parallel processing a more viable alternative. Selecting the right algo
rithm within this setting is becoming increasingly more difficult for a human 
designer. 

Algorithm Selection and Thning Using Transformations 

Transformations are an efficient and powerful tool for the enhancement 
and exploration of parallelism. It has been shown in previous section they can 
have a dramatic influence on the quality of an implementation. However, their 
effect is obviously constrained by the algorithm's computational structure. 
For example, it is simple to construct program instances, which are not ame
nable at all to transformations. Therefore, the only tools with more potential 
than transformations are located in the area of algorithm design and selection. 

An obvious goal in this area is the automatic generation of algorithms 
(which adhere to a given set of specifications), such that the resulting compu
tational graph can be easily transformed into a final implementation with 
maximal performance or minimal cost. It is very likely that this goal will 
remain elusive for years to come. However, it appears that there exist several 
ways to do efficient algorithm design for restricted application domains. 

For instance, the algorithms used in wide classes of applications have a 
substantial freedom in their computational structure. This makes them prime 
candidates for a search to determine, which structures possess the most paral
lelism or hardware potential. Consider for instance the class of algorithms, 
which address the iterative solution of sets of equations. Examples of such 
algorithms are shown in Figure 2 and Figure 3. They all have the following 
structure: 

x(t+l) =/(x(t)), t=O,I, ... 
(1) 

where eachx(t) is an n-dimensional vector and/(.) is some function which has 
as domain and range some subset of the n-dimensional space. If the sequence 
{x(t)} generated by the above iteration converges to a point x', and if the 
functionf(.) is continuous, thenx' is a fixed point off, which satisfies the rela
tionship x* = /(x*). For example, iterative methods are often used for the solu
tion of sparse system of equations, or for the maximization and minimization 
of a function by search for the zeroes of the derivatives. 

When all the components of x are updated simultaneously, the method 
is often called the Jacoby or Gauss-Jacoby iteration. An alternative approach 
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xl' = f1 (x5. xl) 

x2' = 12 (xl'. x2) 

x3' = f3 (x2·. x3) 

x4' = f4 (x3·. x4) 

x5' = f5 (x4·. x5) 

FIGURE 2: ParaUelism of Gauss-Seidel iterations: The initial updating order. 

is to update one equation at a tirne. Equation (1) can then be expressed in the 
following form: 

Xj(t+l) =!j(xdt+l), ... ,Xj_l(t+l),xj(t), ... ,xn(t», i = 1 •... ,(11) 

This type of iteration is often called the Gauss-Seidel iteration and is 
illustrated in Figure 2 for one particular problern instance. Since the Gauss
Seidel algorithm incorporates the rnost recent information at each step 
[0rt90], it often converges faster than Gauss-Jacoby iterations. It is easily rec
ognized that the Gauss-Seidel algorithm. due to its recursive nature, is not 
well suited for pipelining. Furthermore. no parallelisrn is available. On the 
other hand. it is very amenable to transformations or rnanipulations which 
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address the fast execution of recursive programs to the fast implementation of 
recursive program transformation. This observation can be substantiated in 
the following way: 

X2' = 12 (xl' x:z) 

X3' = f3 (X2' X3) 

X4' = f4 (X3' X4) 

XS' = f5 (X4' XS) 

Xl' = f1 (XS', Xl) 

FIGURE 3: ParaUelism of Gauss-Seidel iterations: The increase in parallelism 
and the reduction of the critical path due to the change in the updating order. 

In the Gauss-Seidel iterative algorithm, the order of updating is not 
fixed. Instead of starting from Xl and proceeding forward, we can permute the 
updating order, as shown in Figure 3. Of course, this results in a new algo
rithm with different convergence properties. Nevertheless, for many sets of 
equations, all Gauss-Seidel algorithms will converge to the same fixed point 
after a number of iterations. By analyzing the speed of convergence, the per
formance and the amount of available parallelism, we can, for a particular 
application instance, construct the algorithm, which is the best suited for 
implementation. For example, it is easy to see that the algorithm of Figure 3 
has a significantly shorter critical path than the algorithm in Figure 2 and will 
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result in a substantially faster implementation. Besides the updating order, 
other aspects of the Gauss-Seidel algorithm are prone for optimization as 
well. For instance, one can consider the effect on both performance and con
vergence of the updating more than one component of x at a time. 

Similar algorithm design selection techniques can be used in a variety 
of other numerically intensive algorithms. They include algorithms for the 
solution of ordinary differential equations (such as the Runge-Kutta adaptive 
size step methods, the Bulirsh-Stoer method, and the Predictor-Corrector 
technique), partial differential equation solvers and various minimization and 
maximization algorithms. One especially interesting domain is the class of 
probabilistic optimization methods. 

From the above, it becomes obvious that, in order to be effective and 
realistic, an algorithmic deSigner needs a set of tools, which can help him to 
predict or analyze the speed of convergence (and other performance proper
ties, such as the numerical behavior) and the implementation properties of a 
proposed algorithm. While simulation (or closed form analysis for some 
application classes) is the preferred medium for the former task, tools like 
HYPER with its estimations and transformations can help to predict and ana
lyze the latter. 

For many common tasks, as already mentioned, there exists a variety of 
sophisticated algorithms. The structure and the parameters of those algorithms 
were developed, most often manually by a human designer, in an attempt to 
optimize one particular (and often simplistic) objective function. This results 
in algorithms which perform well with respect to that parameter, but ignore all 
other dimensions of the implementation cost. A typical example of such an 
algorithm is the FFf, which was developed to minimize the number of multi
plications in the DFT. This was a worthwhile goal at that time, but progresses 
in implementation technology have made this cost function less critical, while 
factors such as regUlarity and interconnect structure have gained importance. 

We propose the following procedure, which helps a designer to select 
the most promising algorithm for a given problem instance over a set of goals 
and constraints. 

Given a set of potentially useful algorithms fp, the first step is to iden
tify the so called non-inferior algorithms. An algorithm A is called inferior to 
an algorithm B, if all of the following criteria are fulfilled: 

(1) Algorithm B uses fewer operations of all types than algorithm A; 

(2) Algorithm B has a shorter critical path and shorter iteration bound 
than algorithm A; 
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(3) According to all other available lower bound and statistical esti
mations, algorithm B is always superior to the algorithm A. Th 
evaluate these properties, we use the estimation techniques avail
able in HYPER 

An algorithm A is then called non-inferior, if it is not inferior with respect to 
all algorithms in p. 

For all non-inferior algorithms, we use branch and bound (B&B) tech
niques to select the best one for the given set of goals and constraints. During 
B&B, the implementation cost is estimated using the lower bound estimation 
techniques, available in HYPER To reduce the impact of the initial algorithm 
specification, the algorithms are optimized and tuned over a set of transform a
tions. This set of transformations is restricted to those transformations, which 
do not alter or degrade the numerical behavior of the original algorithm. Since 
HYPER employs very fast estimation and synthesis techniques, usually one 
afternoon is sufficient for the process of algorithm selection and tuning. 

Proof of Concept Example 

In this section, the potentials and the impact of the proposed algorithm 
selection technique will be demonstrated using an eight order Avenhaus 
Bandpass Filter as a driver example. It will be shown how the proper algo
rithm selection can result in dramatic improvements in either throughputs or 
area. Another important point, which is conveyed in this section is that trans
formations are an integral part of the algorithm selection process and that 
ignoring this point can result in inferior solutions or wrong decisions. Finally, 
it is demonstrated that algorithm selection is a complex process and that the 
results most often deviate dramatically from intuitive insights! 

The importance of filters is illustrated by the quote from "Fast Algo
rithms for Digital Signal processing", by RE. Blahut [BlaS5]. He says: "The 
most important task of digital signal processing is the task of filtering a long 
sequence of numbers, and the most important device is digital filter." While 
there are many important families of non-linear filters, including homomor
phic, morphological, nonlinear mean, order statistics and higher order Volt
erra filters, linear filters are the most widely used, because of their well 
studied and understood properties and their inherent simplicity, which in 
many situations guarantees satisfactory performance for a minimal cost. The 
widespread use of linear filters was a major factor in selecting them as the 
driver example in this paper. 
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The selection of the appropriate filter structure for a specified frequency 
response has long been recognized as one of the crucial factors detennining 
almost all filter characteristics such as numerical stability and implementation 
complexity [Cro75]. As a result, many sophisticated filter structures have 
been proposed. While the numerical side of the filter behavioral is well under
stood, the implementation complexity issue have been rarely or only margin
ally addressed. 

The filter under study in this paper was first presented by Avenhaus 
[Aven] and has often been used in the digital filter design, analysis and 
research. For example, Crochiere and Oppenheim [Cro75] presented in an 
depth discussion of several digital filter structures, which can implement the 
required frequency response. They compared the structures according to their 
statistical coefficient word length, the required number of multiplies and adds, 
the total number of operations and the amount of the parallelism and serial
ism. Although their analysis and presentation is prototype example of excel
lency in research, we will show that the presented measures are far from being 
sufficient to select a proper structure for ASIC implementation. Actually, our 
analysis of the example implicates that this manually conducted procedure 
often leads to misleading conclusions. 

We consider the following five structures of the Avenhaus filter, 
designed by Crochiere and Oppenheim [Cro75]: 

(i) direct-form II; 

(ii) cascade form composed of direct form II sections; 

(iii) parallel form; 

(iv) continued fraction expansion structure type IB; 

(v) Gray and Markel's ladder structure. 

The corresponding structures with the appropriate coefficient values for 
the filter at hand are shown in Figures 4 throught 8 .. The first four structures 
correspond to different representations of the same transfer function. The first 
three of them (direct-form II, cascade and parallel form) are well known and 
were considered very early in the filter design literature [Opp89]. The direct 
form corresponds to the representation of the transfer function as a ratio of 
polynomials, the cascade form represents the transfer function as a product of 
second order polynomial ratios, while the parallel and continued fraction 
forms correspond to partial and continued fraction expansion respectively. 
The continued fraction representation was first proposed by Mitra and Sher
wood [Mitn, Mit73]. The fifth structure is proposed by Gray and Markel and 
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IN k OUT 

k = 0.005656462366 

ci 1.479757145 

c2 = -1.387818861 

c3 = -4.548129731 

c4 = 3.990834175 

c5 = 4.352241822 

c6 = -3.801090558 

c7 = -6.802822262 

Cg = 5.978059098 

c9 = 4.094876357 

clO -3.801090558 

cll = -4.026604318 

c12 = 3.990834175 

c13 = -0.7833447265 

cI4 = -1.387818861 

cI5 = 1.232007442 

C15 

FIGURE 4: Direct·form II Structure 
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N 

U 

k = 0.005656462366 

cl = 0.2855823838 

c2 = 0.4512591755 

c3 = -0.9116860618 

'" 0.4457342317 u c4 

Cs = -1.09869455 

c6 = -0.913078673 

c7 = 0.196901665 

Cg = -0.0099665157 

'" c9 = -0.9695353354 u 

clO = 0.5515388641 

cll = -0.7304169706 

cl2 = -0.9705899009 

~ 
FIGURE 5: Cascade-Corm (direct-Corm II sections) Structure 
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OUT 

k = 0.10000 

d = 0.07220910762 

cI = 0.2034508401 

c2 = 0.2855823838 

c3 = 0.9026252904 

c4 -0.9116860616 

Cs = 0.182701196 

c6 0.4457342317 

c7 -0.9457352763 

C8 -0.913078673 

c9 -0.2052671178 

clO = 0.196901665 

cn = -0.2413054652 

c12 = -0.9695353354 

c13 = -0.1965294023 

cI4 0.5515388641 

cIS 0.298888793 

cI6 -0.9705899009 

FIGURE 6: ParaUel-ronn structure. 



www.manaraa.com

156 

c1 = 0.7833447265 

c2 = -0.1885428229 

c3 = 0.9843741951 

c4 = -0.1920962931 

c5 0.9936376827 

c6 -0.1890252997 

c7 = 0.9914182038 

c8 = -0.1964790194 

c9 = 0.005656462366 

c10 = 0.0002916124024 

ell = -0.00 1699657657 

c12 = -0.06980454614 

c13 0.203123313 

c14 = 0.01061747099 

c15 -0.01641846145 

c16 -1.031187912 

c17 = 0.8446328267 

~ 

FIGURE 7: Ladder structure by Gray and Markel. 
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CI = 0.0002828231183 

c2 = 25.53154355 

c3 = -0.2117906668 

c4 = 1.017015349 

Cs = 0.1736820909 

c6 = -12.7837888 

c7 = 0.4649449432 

c8 -1.606209516 

c9 = -0.2767502193 

clO 7.610142205 

cll = 3.939247317 

c12 = -0.4301416747 

c13 = -0.9905202523 

cI4 = 0.6779657016 

CIS = -21.82668197 

cI6 -0.4193825017 

c17 = 0.2481853405 

cI8 = 0.4028556869 

FIGURE 8: Continued-fraction expansion structure type lB. 
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is based on an exploration of the relationship between two port networks in 
the analog circuit and digital filtering theory [Gra73]. 

In addition to presented structures, there exists a great variety of others 
which, of course, can also be used for the realization of the required frequency 
response. The most popular among them, often cited for competitive charac
teristics, are the wave digital filters [Fet86], the state-space digital filters 
[Mu176], the orthogonal [Ra084] and the multi-variable digital lattice filters 
[Vai85] filters (which are a generalization of both Gray-Markel's and Rao
Kailaths digital filters) and finally the systolizable IIR digital filters [Lei90]. 

We limited our analysis to the five mentioned structures, since our goal 
is not to find the "ultimate" structure for the implementation of the Avenhaus 
eight order bandpass filter over all structures ever proposed, but to present a 
procedure to classify arbitrary computational structures given a set of con
straints and implementation goals. Actually, the results will indicate that no 
such "ultimate" exists, as the optimality of a structure strongly depends upon 
the goals and implementation constraints 

Experimental Results 

All five Avenhaus structures were described using the Silage language 
and passed to the HYPER environment. They were simulated in both double 
floating point and fixed point precision in all phases of the design process to 
ensure that the obtained structures were in agreement with the required fre
quency response. 

structure 

direct form II 

cascade 

parallel 

continuous 
fraction 

ladder 

number of 
multiplications 

number of 
additions 

statistical 
word length 

Table 1: Number of operations and Statistical Word Length. 

Table 1 (assembled using data from [Cro75]) shows the number of mul
tiplications and addition and the statistical word length for all five forms. The 
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statistical word length is the minimum number of bits needed, such that the 
resulting structure still meets the frequency domain specifications (as deter
mined by a statistical analysis). We simulated all five examples, and indeed, 
all of them produced the required frequency response. A small correction was 
needed for the direct form II, as, due to a typographical error, two coefficients 
were interchanged in the Crochiere and Oppenheim paper. 

Table 2 shows the number of operations in the five structures after the 
multiplication strength reduction, which substitutes all multiplications by a 
proper combinations of shifts and adds. Generally speaking, of course, there is 
a correlation between the number of multiplications and the word length in 
the initial form and the number of shift-operations after the expansion. How
ever, only a precise analysis can determine the final effect of the application of 
the multiplication strength reduction. 

structure total additions shifts subtractions transfers 

direct fonn II 215 58 103 46 7 

cascade 
::"::: 

31 40 18 4 ~.:::t 
parallel 113 33 51 24 4 

continuous 205 55 106 43 
fraction -

ladder 116 35 49 31 -

Table 2: Number of operations after Multiplication Expansion. Note that all 
structures have one input operation in addition to the listed Operations. The 

transfer operations are register-register transfers, needed for the 
implementation of delays. 

For example, although the direct form has both fewer multiplications 
(16 vs. 18) and a shorter word length (21 vs. 23) than the continuous fraction, 
the latter eventually requires fewer shifts (103 vs. 92) and a smaller number of 
operations (215 vs. 178). From this table, it already becomes clear that, even 
when implementing the filter on a general purpose; single processor computer, 
the selection of the right algorithm is extremely important (for instance 
because of the wide span over the number of operations: 94 versus 215). This 
is even more true when considering ASIC implementations. 

Table 3 shows the length of the critical path for all five forms in the ini
tial format and after the application of retiming and pipelining. All examples 
are implemented using the word lengths as indicated in Table 1. We decided 
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to use only those two transformations, because they never alter the bit width 
requirements. Although HYPER has more than 20 other transformations, 
many of them may alter the numerical behavior and hence the required data 
representation. Distributivity is an example of such a transformation. During 
the optimization for the critical path, we used the Leiserson-Saxe retiming 
algorithm for both retiming and pipelining [Lei83,Pot92aJ. During the optimi
zation for area, retiming and pipelining for resource utilization was used 
[Pot91b, Pot92bJ. As will be demonstrated below, those few transformations 
had already profound effects on the final results. and 

structure initial retimed pipelined 

direct fonn II 980 686 686 

cascade 

parallel 

continuous 2332 1908 1908 
fraction 

ladder 2835 2835 630 

Table 3: Critical path for the Avenhaus Eight Order Bandpass Filter (in JlSec -
for a 2 /lID technology). 

In the initial structures, the ratio in critical paths between the fastest 
(cascade) and the slowest (ladder) structures equals 5.4. When no extra 
latency is allowed, this ratio becomes even higher (8.3) as the cascade struc
ture is very amenable to the retiming transformation, while this is clearly not 
the case for the ladder filter. If we allow the introduction of one pipeline stage, 
the parallel form becomes the fastest structure. It is important to notice that, 
when throughput is the major concern, other filter structures can be con
ceived, which result in even smaller critical paths. For example, the recently 
proposed maximally fast implementation of linear computations [Pot92b J 
reduces the length of the critical path to only 174 nanoseconds without intro
ducing any latency. This is the improvement by the factor of 16.3 over the 
original ladder structure. When additional latency is allowed, this factor can 
be improved to arbitrarily high levels [Pot92b J. 

Table 4 shows the area of the final implementation for the five struc
tures for six different sampling periods. For all five forms, results are shown 
for both the original and the transformed structures. Note that the feasibility of 
acheiving the required performance is a function of the selected structure and 
the applied transformations. It can be observed that the ratio between the larg-
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est and smallest implementations is even higher than the mentioned perfor
mance ratios. 

For example, for a sampling period of 1 micro-second, only the direct, 
cascade and parallel forms are feasible alternatives. The ratio of the imple
mentation areas between the direct form and the cascade form equals 12.9. 
This ratio is improved to 15.1 for the retimed cascade form (retiming was 
done using the retiming for resource utilization [Pot91b]). Interestingly 
enough, there is not a single instance were pipelining improved the area 
requirements. This is the consequence of the fact that in all designs, except for 
the fastest implementations, the major part of the area cost is located in the 
registers and not the execution units or the interconnect. Most often, pipelin
ing increases registers requirements even more. Also, due to recursive nature 
of the filters, the effectiveness of pipelining is limited. 

sampling period (in JlSec) 
structure 

5 4 3 2 1 0.5 

dfIlI 20.32 20.32 22.88 26.36 92.49 

dfII PR 19.86 19.86 21.75 30.65 53.98 

cascade I 6.63 6.63 6.63 6.63 8.97 

cascade P 5.98 5.98 5.98 

parallel I 

parallel R 7.16 

parallel P 7.16 13.42 

con frae I 

con fraRP 19.54 27.19 

ladder RI 7.38 

ladder P 7.38 10.77 16.87 

Table 4: Implementation Area for six different throughput requirements. 
I - initial structure; R - retimed structure; P - pipelined structure. 

Table 5 shows the critical path for all five forms (original and trans
formed) when the statistical word length information is not used and all struc
tures are implemented with 23 bit data and coefficients. All forms simulate 
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well for this word length. It can be observed that the critical path increased for 
all structures, except for the continuous expansion form, which needs 23 bits 
in any case. For example, the critical path of the 23 bit ladder filter (5300 
llSec) is 20 times higher than what was obtained for the optimal cascade or 
parallel structures with an optimized word length (261IlSec). The obvious and 
important conclusion is that the importance of word length optimization can 
not be overstated and is a crucial component during the optimization for both 
area and throughput. Preliminary studies also indicate that the importance of 
word length optimization is even higher when power and testability are con
sidered. Interestingly enough, until recently, very little attention was paid to 
this important issue, which often has a dramatic influence on the quality 
of the final implementation. 

Looking again at Table 4, we see that, depending upon the required 
throughput, the minimal area is obtained by different structures. For the fast
est designs (designs where throughput rate is higher than 1 MHz), the pipe
lined cascade (when additional latency is allowed) and the parallel forms are 
the smallest solutions. For medium speeds (sampling period between 1 and 4 
Ils) the parallel form achieves the smallest area. Finally and most surprisingly, 
when the throughput requirements are the least strict, the ladder form is the 
most economical implementation. Notice that ladder form does neither have 
the smallest bit width nor the fewest number of operations. However, its regu
lar and balanced structure requires few registers and few interconnects, which 
results in a slightly smaller area than other implementations. 

structure pipelined 

direct form II 

cascade 

parallel 1484 1431 

continuous 2332 1908 1908 
fmction 

ladder 5300 5300 1272 

Table 5: Critical Path for 23 bit Word Lengths (for all structures). 

It is very important to observe that the previous analysis does not indi
cate that any form is a-priory superior in terms of speed or area. The results 
depend strongly upon the required frequency response, the applied transfor
mations, the objective function (for instance power or testability) or the per-
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formance parameters (for instance signal to noise ratio or overflow behavior). 
For instance, the conclusions might be different for a 7th order elliptical low
pass filter. Our point is that for a given set of goals and constraints, only a 
quantitative analysis such as proposed in this paper, can provide a more quali
fied view, which can help designers in making the proper decisions during the 
design process. 

Finally, it is worth mentioning that all results presented in this section, 
if not otherwise stated, were obtained using the HYPER system. All results 
were generated and analyzed in a time span of two hours, which demonstrates 
that efficiency of HYPER is high enough to address the algorithm selection 
and tuning problem. 

FUTURE DIRECTIONS IN HYPER 

It has been a proven wisdom that the quality of an answer is almost 
always proportional to the number of questions it rises. At least according to 
this criteria, the HYPER approach has been highly successful. Design experi
ence with HYPER have lead to a number of exciting novel design approaches 
and research venues. For instance, it was realized that high level synthesis 
techniques and optimizations can have a major impact on the power consump
tion of an implementation. This result is especially interesting given the cur
rent interest in portable consumer, computation and communication devices. 
A low power design methodology has been developed and implemented in 
HYPER [Cha92]. We have furthermore realized that the synthesis techniques, 
used in HYPER (especially the estimations, transformations and instruction 
and hardware selection) are amenable to other architectural styles as well. 
This has lead to the development of a a number of related synthesis environ
ments for field programmable data path architectures[Che92] and multi-pro
cessor programmable DSP's [Hoang92]. We are currently investigating how 
HYPER can be adapted to address the retargetable compilation problem for 
programmable DSP's. Finally, using similar concepts as described in this 
paper, it can be easily seen that HYPER can be extended to address the archi
tectural design space exploration and performance analysis problems. Efforts 
in this direction are under way. 

Both transformations and estimations (which were not discussed here 
due to lack of space) are research areas in the early stages of development. 
Their impact in domains such high level and system level synthesis will 
increase with the development of novel and more powerful techniques. These 
results might be reflected into more traditional domains, such as retargetable 
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compilers and compilers for massively parallel machines. It is our belief that 
tools such as HYPER can act as a seed for widely used, industrial strength 
synthesis environments. Finally, we are convinced that computer aided algo
rithm selection and tuning is one of techniques, which will help the designer 
to manage and conceive ever more complex systems and applications. 
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ABSTRACT 

This paper addresses high-level synthesis methodologies for 
dedicated digital signal processing (DSP) architectures used in the 
Minnesota ARchitecture Synthesis (MARS) design system. We 
present new concurrent scheduling and resource allocation algorithms 
which exploit inter-iteration and intra-iteration precedence con
straints. These novel algorithms implicitly perform algorithmic 
transformations such as pipelining and retiming, and produce solu
tions which are as good as or better than those previously published. 
Previous synthesis systems have focused on DSP algorithms which 
have single or lumped delays in the recursive loops. In contrast, 
MARS is capable of generating valid architectures for algorithms 
which have randomly distributed delays. MARS exploits these delays 
to produce more efficient architectures and allows our system to be 
more general. We are able to synthesize architectures which meet the 
iteration bound of any algorithm by unfolding the original data flow 
graph. 
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1. INTRODUCTION 

High level synthesis of dedicated architectures for real-time digital signal pro
cessing (DSP) systems is becoming a more common and crucial task because many 
applications are requiring higher sample rates which can only be implemented by 
dedicated architectures. Even low to moderate sample rate systems are implemented 
with dedicated architectures to meet low power and area requirements. The objec
tive of high level architecture synthesis is to design a valid architecture from an 
algorithmic description while using realistic technology constraints. The resultant 
architecture must maintain the original functionality while meeting the speed 
requirement and minimizing the area. Although architecture synthesis is becoming 
more common and applied more widely, it is still a difficult and NP-complete prob
lem. Therefore many heuristic approaches have been proposed [1-8); however, the 
quality of the performance of each heuristic can differ from one benchmark to 
another. The main task in high-level synthesis is the scheduling of algorithmic 
operations to iteration time partitions and the allocation of hardware operators to 
implement the operations. DSP algorithms are repetitive in nature; therefore, most 
scheduling algorithms attempt to exploit concurrency among the algorithmic opera
tions to reduce the iteration period and/or the amount of hardware needed. 

Some previous synthesis approaches include the simplest technique known as 
, As Soon As Possible' (ASAP) scheduling and allocation where the algorithmic 
operations are ordered according to their precedence constraints and are then 
scheduled from the first iteration time partition to the last [1). The iteration time 
partition is defined to be the time step at which a task is executed modulo the itera
tion period. For example, if the iteration period is 16 units, then there are 16 itera
tion time partitions (0 through 15). If a task is scheduled for time step 18, then the 
task is assigned to time partition 2 (which is 18 modulo 16). ASAP and similar 
methods generally do not produce very good results because they use a global one
time ordering of the nodes. A more complex class of algorithms utilize list schedul
ing techniques. Operations are first sorted into an ordered list according to some 
local pliority function. The sorted operations are then iterativcly scheduled into an 
iteration time partition until the hardware resources are exhausted. Then operations 
are re-ordered and scheduled into the next time partition [2). Another technique is 
force directed scheduling where force values for all operations at all feasible time 
partitions are calculated. Then the operations with the least force values at a time 
partition are scheduled [3). More recently, integer linear programming techniques 
have been applied to the synthesis problem [4). This paper presents the methodolo
gies for high level synthesis of dedicated DSP architectures using the Minnesota 
ARchitecture Synthesis (MARS) system. MARS is capable of producing results as 
good as or better than previous synthesis systems [9,10). 

Previous synthesis systems have concentrated on simple DSP algorithms where 
all recursive loops contain single or lumped delays. To design better DSP architec
tures for real-time applications, one needs to consider a wider range of algorithms. 
Little work has been performed in the area of randomly distributed delays within 
recursive loops [11). MARS can synthesize valid architectures for simple algo
rithms with lumped loop delays as well as complex algorithms with randomly distri
buted delays. In some cases the resultant design cannot meet the required sample 
rate unless an algorithmic transformation is applied. If the algorithmic description 

requires a fractional iteration period (e.g., T = t units), all previous synthesis sys

tems will generate an architecture with an iteration period of 2 units. MARS is able 
to apply an unfolding transformation and design an architecture which processes 
multiple iterations over a longer iteration period (e.g. 2 iterations over T = 3 units) 
[12). Thus the architecture is able to achieve the required sample rate. 
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Multiprocessor schedules can be non-overlapped, fully-static overlapped, or cyclo
static overlapped. A non-overlapped schedule contains all operations for a single 
iteration of the algorithm within one iteration period. A fully-static overlapped 
schedule contains operations of multiple iterations of the algorithm within one itera
tion period [12]. A cyclo-static overlapped schedule contains operations of multiple 
iterations of the algorithm within one iteration period; and within the multiple itera
tions, a different processor can be used to start each iteration [13]. Depending on 
the original algorithm, MARS will generate the proper type of schedule which best 
satisfies the algorithm's precedence constraints. 

In this paper, we represent the DSP algorithm using a synchronous data-flow 
graph (DFG) model [14]. Within this model, each node in the DFG represents an 
algorithmic operation and all arcs represent communication links between the 
operations. Any arc U ----7 V with i delays (where i is any non-negative integer) 
implies that the result of the l-th iteration of U is used to execute the (l+i)-th itera
tion of V. The arcs with delays dictate the inter-iteration precedence constraints 
and represent concurrency between iterations. The arcs without delays represent the 
intra-iteration precedence constraints and dictate the concurrency between opera
tions of the same iteration. 

The organization of this paper is as follows. Section 2 presents a novel iterative 
loop based concurrent scheduling and resource allocation algorithm for operations 
located within recursive loops (recursive nodes). Section 3 presents the scheduling 
and resource allocation algorithm for operations not found in recursive loops (non
recursive nodes). In section 4, we present an algorithmic transformation technique 
used in MARS to achieve the maximum sample rate for certain cases. Section 5 
describes the way MARS converts the final schedule into an architecture. We 
present results of MARS in section 6, show a simple example with a set of 
input/output files in section 7, and draw conclusions in section 8. 

2. ITERATIVE LOOP BASED, CONCURRENT SCHEDULING AND 
RESOURCE ALLOCATION ALGORITHM FOR RECURSIVE NODES 

The first step of any synthesis system is scheduling and resource allocation; 
therefore, we first present our iterative loop based concurrent scheduling and 
resource allocation algorithm. To improve the quality of the schedule and reduce 
the number of processors, MARS implicitly retimes and pipelines the flow graph as 
it schedules the DFG [15]. The synthesis of a high sample rate system is restricted 
by the recursive sections of any system. Recursion negates the most obvious ways 
of improving the performance of the final architecture. This is because the compu
tational latency associated with the feed-back loops limits the opportunities for 
pipelining and/or parallel processing. The non-recursive sections are less restrictive 
because one can always place latches across any feed-forward cutset (at the expense 
of greater latency) to achieve the desired level of pipelining. Loops cannot be pipe
lined to any arbitrary level by simply inserting latches because the pipelining 
latches would change the number of delays in the loops and, hence, the original 
functionality of the DFG. Therefore, the recursive loops set the maximum sample 
rate for an architecture. In this section we describe MARS's major steps of schedul
ing and resource allocation for recursive nodes. 

2.1. Step 1: Loop Search 
The data input file to MARS specifies the operations, the DFG, the technology 

constraints for each processor type, and a user defined iteration period. From this 
information and before initiating the loop search, MARS generates some prelim
inary information to be used throughout the rest of the program. First MARS locates 
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the maximum computation time, Tcmax' of all operations within the DFG: 

Tcmax = {MAX [Tc.] : for alll 
where Tco = the computation time for operation type i. 

If Tcmax is greater than the iteration period, MARS sets the iteration period 
equal to Tcmax. This is to satisfy the constraint that the operation with the greatest 
computation time must complete within one iteration period. Next create the pre
cedence graph of aU recursive and non-recursive nodes by removing any arc which 
contains delays. 

Definition 2.1: The precedence graph height (PGH) value represents a relative 
location of a node within the precedence graph as referenced from the bottom of the 
precedence graph. 

All nodes of the precedence graph are assigned PGH values. MARS deter
mines the PGH values by first assigning a value 0 to all nodes without any succes
sor nodes (i.e., the nodes at the bottom of the precedence graph). Then all of their 
immediate predecessors will be assigned a PGH value of 1. PGH values continue to 
increase until the top level nodes are reached. For example consider a node which 
has a PGH value of c, each of its immediate predecessor nodes will be assigned the 
value c + 1 iff all other successors of this node have PGH values less than or equal 
to c. Consider a section of a precedence graph as shown in Fig. 1, we see that nodes 
8 and 2 do not have any successor nodes; therefore, their PGH values are O. Nodes 
7 and 3 have PGH values equal to I, since they are the immediate predecessors of 
nodes 8 and 2 respectively. Node 4 will have a PGH value of 2. Now, to calculate 
the PGH value for node 5, we first see that node 7 has a PGH value of 1; therefore, 
the PGH value assigned to node 5 will initially be equal to 2. However, node 4 has a 
PGH value of 2. Therefore the PGH value assigned to node 5 will be 3. 

Figure 1: An example to show the calculation of PGH values. Node 5 was initially 
set to 2, but node 4 has a PGH = 2; therefore, node 5 has a PGH = 3. 
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Now we may begin the search for all loops within the flow graph. When a 
loop is located, MARS calculates the loop's loop bound [16] as follows: 

TL 
T =-' LB, D . 

L, 

where TL, = the loop computation time of loop j and 
D L, = the number of loop delays within loop j. 

One can calculate a lower bound on the iteration period from the loop bound 
values by locating the maximum loop bound. This lower bound is known as the 
iteration bound [12,13,16]. The complexity for obtaining all of the loops is linear in 
the number of nodes plus edges; however, in the worst case the number of loops can 
be exponential in the number of nodes [17]. Next, MARS orders the loops by 
decreasing criticalness or loop bound. Ties are broken by giving preference to the 
loop which contains a node with a larger PGH value. Now MARS searches the 
ordered set of loops for a subset of loops, L, such that all recursive nodes can be 
found in L. MARS first places all loops, whose loop bounds are equal to the itera
tion bound, into L. All nodes found in L are considered to be covered. Next, MARS 
choses a loop to be a member of L if the loop contains the greatest number of 
uncovered nodes. Other methods may be applied to minimize the number of loops 
in L. For each loop with a single or lumped delay(s) in L, break the loop at the 
delay(s) such that all nodes are ordered in decreasing PGH values. For loops with 
distributed delays, break the loop at each delay to create a set of loop sections. 
Each loop section will be manipulated as a separate loop, but they are still con
sidered as part of the original loop (see Fig. 2). Here we see that loop Ll in Fig. 2(a) 
contains two distributed delays. MARS breaks loop Ll at the delays to create 2 loop 
sections, as shown in Fig. 2(b). The two loop sections are still considered part of 
loop L 1• The nodes of each loop section are also ordered by decreasing PGH values. 

Example 2.1: Consider the 4-stage pipelined normalized lattice filter as shown in 
Fig. 3(a) which consists of 15 multiply and 11 add operations [18].We are assum
ing a multiply has a computation time of 2 units and an add has a computation 
time of 1 unit. The critical path computation time of this filter is 10 units. This 
filter contains a recursive section which has 8 recursive nodes (5 multiply and 3 
add operations), and a non-recursive section which has 18 non-recursive nodes 
(10 multiply and 8 add operations). There are 3 loops in this filter: 

L1: 23-25-22-19-4D 

L2: 20-21-4D-26-25-22-19-4D 

MARS breaks loop L2 into 2 loop sections: 

3 
Loop bound = "2 

9 
Loop bound = "8 

Loop bound = ! 

L21 : 26-25-22-19-4D 
L22: 20-21-4D 

Therefore the total number of loops and loop sections required to schedule the 
recursive nodes is 4: L1, L21 , ~2' and L3 •• 
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Loop Ll 
-----------------

Loop 
Section 

LSI 

Loop 
Section 

LS2 

~-----------------

(b) 

Figure 2: (a) This shows a loop, L" which has two distributed delays within the 
loop. (b) Here L, is broken into two loop sections, LS, and LS2• MARS created 
the loop sections from loop L, by breaking the loop at the arcs which contained a 
delay. 

Figure 3(a): The DFG of a 4-slage pipelined, normalized lattice filter. TA = 1 
unit, T M = 2 units, the iteration bound = 1.5 units, and TCRrf = 10 units. 
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Example 2.2: Consider the Sth-order wave digital elliptic filter benchmark as 
shown in Fig. 3(b) which consists of 8 multiplication and 26 addition operations 
[1,21). We are assuming the same parameters as in example 2.1. The critical path 
computation time of this filter is 17 units. This is a completely recursive system 
that contains 4S loops. MARS only requires S loops to schedule all of the nodes: 

L 1: 2-7-16-17-21-1S-8-10-6-3-S-1-4-D Loop bound = 16 
L2: 7-16-17-21-1S-8-10-6-9-11-14-12-13-D Loop bound = 16 
L3: 24-17-22-18-23-27-2S-26-28-31-29-30-D Loop bound =IS 
L4 : 24-17-22-18-23-27-2S-32-34-33-D Loop bound = 13 
L5: 16-17-21-1S-20-19-D Loop bound = 7 

• 

Output 

Figure 3(b): The DFG of the Sth-order wave digital elliptic filter. TA = 1 unit, T M = 
2 units, the iteration bound = 16 units, and TCRIT = 17 units. 

2.2. Step 2: Initial Schedule 
The iteration bound is the lower bound on the iteration period for any flow 

graph. If the iteration bound is greater than the iteration period, then we set the 
iteration period equal to the iteration bound. Next calculate the lower bound for the 
number of processors required for each operation type by the following: 

(Lower Bound)v = r Nv * Tv 1 
Pv * T 

where N v = number of U type operation, 
Tv = computation time of a U type operation, 
Pv = pipelining level of a U type processor and 
T = iteration period. 
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Now create the schedule matrices, one matrix for each operation type. For 
example, consider a DFG consisting of addition operations and multiplication 
operations. There will be 2 schedule matrices: one for addition and one for multipli
cation operations (see examples 2.3 and 2.4). Rows of a schedule matrix represent 
iteration time partitions, and columns represent loops and loop sections. Each loop 
or loop section is assigned to a set of columns such that the first set of columns 
corresponds to the most critical loop and the last set to the least critical loop. We do 
this to reflect the order of the loops within L onto the schedule matrices. MARS 
then creates an initial schedule by first scheduling the nodes of the most critical 
loop and then by iteratively scheduling the other loops. The algorithm MARS uses 
to choose the next loop to be scheduled is as follows: 

while (more unscheduled loops exist in set L) { 
Place into set Lp all unscheduled loops which contain at least one previ
ously scheduled node. 

If (set Lp is the null set) { 
Place into set Lp all unscheduled loops which have an intra-iteration 
precedence constraint with a previously scheduled node. 

If (set Lp is the null set) 
Place all unscheduled loops into set Lp. 

Locate loop Ls within set Lp such that Ls has the largest loop bound or 
equivalently, Ls is the most critical loop of set Lp. 

Schedule the unscheduled nodes of loop Ls into the schedule matrices. 

Clear set Lp 

When scheduling a loop, MARS adds the unscheduled nodes to the schedule 
matrix while maintaining the intra-iteration precedence constraints. The scheduling 
of the DFG's most critical loop is the easiest because MARS has not yet scheduled 
any nodes. Therefore, starting from time 0, MARS schedules the nodes of the most 
critical loop. Loops which contain previously scheduled nodes must be scheduled in 
a manner which maintains the proper precedence constraints. By locating the posi
tions of the previously scheduled nodes within the loop Ls, MARS has a reference 
point to begin adding the unscheduled nodes into the matrices. Loops which only 
have a precedence constraint to a previously scheduled node may have mUltiple 
constraints to previously scheduled nodes. Before MARS can begin the scheduling 
of the nodes of such loops, it must locate the proper constraint which will ensure 
that the other constraints will be satisfied. By choosing the tightest precedence con
straint, which minimizes the difference in PGH values, as the reference point to 
begin the scheduling process for the nodes of loop L., MARS is able to satisfy all 
other precedence constraints. Thus we connect an unscheduled node with the largest 
PGH value to a previously scheduled node. Note that the minimum difference in 
PGH values directly corresponds to the tightest constraint between the scheduled 
loops and loop Ls. 
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The loops which are completely independent of the previously scheduled nodes 
have no initial reference point from which to start the scheduling of their nodes. 
Because these loops are independent, they can be scheduled from any starting point. 
Therefore MARS begins the scheduling of such loops from a starting time deter
mined by: 

Starting time partition for Ls = PGHmax - PGHtop ' 

where PGHmax = maximum PGH value of the precedence graph and 
PGHtop = largest PGH value within loop Ls. 

In some cases when MARS schedules a loop, the loop may "wrap" around the 
matrices. Nodes of such loops are represented with a superscript of ± I. The resul
tant value of such nodes in the n -th iteration will be used to compute the (n ± l)-th 
iteration. 

Definition 2.2: The loop flexibility available for each member of set L defines the 
number of iteration time partitions that nodes of a loop may be shifted before violat
ing the inter-iteration precedence constraint. MARS calculates the loop flexibility 
for each loop of L by the following equation: 

where F = the flexibility, 
T = iteration period, 

F = T * DL - h 

DL = number of loop delays and 
h = loop computation time. 

Definition 2.3: A frozen node is defined as a node which belongs to a loop with 
zero flexibility. 

Propel·ty 2.1: Frozen nodes cannot be shifted to another time partition without 
violating an intra- or inter-iteration precedence constraint. 

For every loop with zero flexibility, MARS marks all nodes of that loop as 
frozen nodes. Next, MARS determines if the lower bound on the number of proces
sors for each operation type is capable of processing all of the frozen nodes 
assigned to each time partition. If not. MARS will allocate more processors to han
dle the frozen nodes. 

Example 2.3: The filter of example 2.1 has an iteration bound equal to 1.5 units. 
Since this is less than the multiply computation time, the iteration period is set to 
2. The lower bound on the number of multiplication and addition processors for 
all nodes are equal to 8 and 6 respectively. We also assume the add processors 
are pipelined by 1 stage and the multiply processor by 2 stages. Fig. 4(a) shows 
the initial schedule of the filter. Note that the nodes which are marked by -1 and 
-2 represent the operations of the (n-1)-st and the (n-2)-nd iterations. The flexibil
ity for loops Llo L2 • and L3 are 2, 7, and 5 respectively .• 

Example 2.4: The filter of example 2.2 has an iteration bound of 16 units. 
Assume we use an iteration period equal to lhe iteration bound, the lower bound 
on the number of multiplication and addition processors are equal to 1 and 2 
respectfully. We also assume the same technology constraints as in example 2.3. 
Fig. 4(b) shows the initial schedule of the filler. Note that the nodes which are 
marked by -1 represent the operations of the previous iteration. All nodes of 
loops L) and L2 are frozen because their loop bounds equal the iteration period. 
Therefore the loop flexibility for each loop equals O. The flexibility for loops L 3, 

L4 and L5 are 1, 3, and 9 respectively .• 
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MULTIPLICATION 

time LI L21 L22 L3 step 

0 23 26 -I -I 
20 24 

1 
-I 

22 

ADDITION 

time LI L21 L22 L3 step 

0 
-I -2 

25 21 

1 -2 
19 

Figure 4(a): The initial schedule for the recursive nodes of the lattice filter of Fig 
3(a). Note that this is also the final conflict free schedule for the recursive nodes of 
the lattice filter. 

2.3. Step 3: Resolve Conflicts 
The basic concept which MARS uses to reduce the total number of processors 

is shown in Fig. 5. We see that MARS divides the initial schedule matrices into two 
halves. The upper half represents earlier time partitions; the lower half represents 
later time partitions. The initial schedule contains only one iteration and minimal 
overlap of the neighboring iterations. MARS will "stretch" or shift the schedule in 
two directions to increase the overlap between multiple iterations and to reduce the 
number of nodes involved in each shift. We can increase the overlap by exploiting 
the inter-iteration precedence constraints and, therefore, help generate better 
schedules. Previous precedence graph based scheduling methods did not consider 
the inter-iteration precedence constraints. Furthermore, by ordering the schedule 
matrices by decreasing order of hardware area cost, MARS is able to reduce the 
overall area by attempting to fully utilize the allocated processors of the more 
expensive operation types. MARS attempts to minimize the number of allocated 
area expensive processors, by using the loop flexibility initially on the more expen
sive operation types. 

Definition 2.4: A scheduling conflict occurs at an iteration time partition when 
more nodes are scheduled at that time partition than processors are available. 
MARS recognizes two types of conflicts: primary conflicts and secondary conflicts. 
A primary conflict is a conflict between nodes which arc members of loops with 
zero flexibility. Some nodes involved in secondary conflicts belong to loops with 
positi ve flexibility. 
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Add Multiply 
time L1 L2 LJ L4 Ls L1 L2 LJ L4 Ls step 

0 2 13 ' 
-1 

30 

1 7 

2 16 24 

3 17 

4 21 22 

5 

6 15 18 

7 8 23 20 

8 19 10 27 

9 

10 6 25 

1 1 3 9 26 32 

12 1 1 28 5 34 

13 14 23 

14 1 33 

15 4 12 29 

Figure 4(b): The initial schedule of the elliptic filter of Fig 3(b). Note that all nodes 
are recursive nodes in this example. 
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Tine Step - 0 - - - - )r----

Tme Step - r-~~ ---->--+-------.....j~ 

Tme Step-T-1 ----)10---....., 

Figure 5: A conceptual view of how MARS "stretches" the schedule to resolve 
conflicts and to reduce the number of allocated processors. 

MARS begins with the most expensive operation's schedule matrix and locates 
a time partition with a non-primary scheduling conflict. Then MARS must choose a 
node for shifting to resolve the conflict. First MARS searches all of the nodes 
involved in the non-primary conflict for all non-frozen nodes. Of the non-frozen 
nodes, MARS chooses the node which belongs to the more critical loop. 

Definition 2.5: Hiddenflexibility is the flexibility between a node and its immediate 
predecessor or successor. This flexibility is only available to that node and not to 
the loop. 

For example, consider the partial schedule matrix of Fig. 6(a) and its corresponding 
partial precedence graph as seen in Fig. 6(b). We see that the intra-iteration pre
cedence constraint from node 12 to node 20 is satisfied. We also note that if node 
20 were scheduled at time partition 6, the precedence constraint will still be satis
fied. Therefore, there is hidden flexibility available to node 20. 
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• • • • • • • • • • • • 
5 12 

6 13 24 

7 14 20 2S 

8 1S 21 

• • • • • • • • • • • • 

(b) 

Figure 6: (a) This is a partial schedule segment to demonstrate the idea of hidden 
flexibility. F = the loop flexibility for each loop. (b) This is the corresponding pre
cedence graph for the partial schedule segment of Fig. 6(a). 
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Property 2.2: Any node which is a member of a loop with zero flexibility is only 
temporarily frozen iff there is hidden flexibility available to it. 

If MARS cannot locate a non-frozen node, it searches the nodes involved in the 
non-primary conflict for all temporarily frozen nodes. From this set of nodes, 
MARS chooses the node which belongs to the more critical loop. If all nodes are 
frozen (i.e., a primary conflict), MARS allocates another processor. 

If the selected node lies in the time partition range of 0 to r Tl2l - 1 (T is the 
iteration period), MARS attempts to shift the node and any predecessors to an ear
lier time partition. 

Definition 2.6: Wrapped nodes are nodes which are scheduled at time steps which 
are either negative or greater than or equal to T (i.e., t < 0, or t ~ T). Non-wrapped 
nodes are nodes which are scheduled at time steps equal to the time partitions (i.e., 
o ~ t ~ T -1). Wrapped nodes are identified in the schedule with a superscript of ± I. 

If the node is a non-wrapped node, MARS tries to exploit the hidden flexibility 
available to the node or to one of its predecessors before attempting the shift using 
the loop flexibility. For wrapped nodes with the "-I" superscript, only the hidden 
flexibility shift to an earlier time partition is considered at this point. A shift of the 
node and its predecessors to new time partitions should not create any primary con
flicts. Therefore, if shifting to an earlier time partition is not possible, MARS 
attempts the shift to a later time partition by first trying to exploit the hidden flexi
bility available to the node or to one of its successors. If no hidden flexibility exists, 
MARS attempts to shift the node and its successors by using the loop flexibility. 
Again, the shift should not create any primary conflicts. 

For nodes which lie in the time partition range of r T I2l to T - 1, MARS first 
attempts to exploit any hidden flexibility of the node or one of its predecessors for 
shifting to an earlier time partition. If this does not resolve the conflict, it attempts 
to use the hidden flexibility available to the node or one of its successors for shift
ing to a later time partition. Should the conflict still remain unresolved and if the 
node is a non-wrapped node MARS will use the loop flexibility to shift the node 
and its successors to a later time partition. Otherwise, MARS will attempt to shift 
the node and its predecessors to an earlier time partition. MARS does this because 
the wrapped nodes with the "+1" superscripts should continue to be shifted to earlier 
time partitions. If MARS cannot resolve the conflict after attempting to shift all 
non-frozen and temporarily frozen nodes, MARS allocates a new processor. MARS 
repeats the process of locating a conflict and then resolving it until a conflict-free 
schedule is generated for the recursive nodes. 

Example 2.5: Continuing the previous filter of example 2.3, we see that the ini
tial schedule is already conflict free; therefore the final, conflict-free schedule is 
the same initial schedule as shown in Fig. 4(a) .• 

Example 2.6: Continuing the previous filter example 2.4, we see that MARS is 
capable of generating a valid conflict-free schedule as shown in Fig. 7. Note that 
with the iteration period equal to the iteration bound, a third addition processor 
was allocated due to the tight intra-iteration precedence constraints .• 
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time A, A2 A" M step 

0 2 -1 -1 
13 29 

1 7 -1 -1 
33 30 

2 16 24 

3 17 

4 21 

5 22 

6 15 

7 8 20 18 

8 19 23 10 

9 27 

10 6 

11 3 9 25 

12 32 1 1 26 5 

13 28 14 

14 1 31 

15 4 12 34 

Figure 7: The final conflict free schedule for the elliptic filter of Fig. 3(b). Note 
that with an iteration period equal to the iteration bound, a third processor was allo
cated because of the tight precedence constraints. 
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3. SCHEDULING AND RESOURCE ALLOCATION FOR NON
RECURSIVE NODES 

Because non-recursive sections are more flexible than recursive sections (one 
can always pipeline the non-recursive sections at the feed-forward cutsets at the 
expense of latency), MARS performs the scheduling and resource allocation for 
non-recursive nodes after all recursive nodes have been scheduled and all conflicts 
among the recursive nodes have been resolved. Non-recursive paths do not impose 
limits on achieving the desired iteration period except that the iteration period has to 
be greater than or equal to the maximum computation time of all operations within 
the DFG. Most previous critical path scheduling systems were based on earliest and 
latest execution time; however, for MARS the latest execution time partition can be 
as large as required. MARS reduces the number of pipeline delays by satisfying as 
many intra-iteration precedence constraints as possible and by exploiting the inter
iteration precedence constraints. Since all recursive systems must have internal 
algorithmic delays, MARS reduces the number of pipelining stages by first using 
these internal delays through implicit retiming before introducing any pipeline 
stages. At this point, MARS considers all recursive nodes to be frozen. They will 
not be involved in any shifts when conflicts are being resolved. In this section, we 
describe MARS's major steps for scheduling and resource allocation of the non
recursive nodes. 

3.1. Step 1: Calculate Minimum Number of Processors 
The scheduling of non-recursive nodes begins with the identification of all 

non-recursive nodes of the flow graph and the number of unused time partitions for 
each allocated processor. MARS also checks if the iteration period is valid in the 
same manner as described in section 2.1. With this information, the exact number of 

additinnill pm"'~'~ ,::::::::re~ rbY~v _ TSv] * Tv 1 
Pv * T 

where N v = number of type U operations within the non-recursive section, 
TSv = number of available time partitions in the type U processors, 
Tv = computation time of the type U operation, 
P u = pipe lining level of the type U operation and 
T = iteration period. 

Example 3.1: Consider the filter of example 2.1. We have already shown the 
scheduling of the recursive nodes. Now we schedule the non-recursive nodes. 
From example 2.5, we see that there are II time partitions available for multiply 
operations and 9 time partitions available for add operations. There are 18 non
recursive nodes: 10 multiplication and 8 addition operations. MARS determined 
that this filter will not require any new processors. Therefore the number of pro
cessors required will equal the lower bound of 8 hardware multiplication opera
tors and 6 hardware addition operators .• 

Example 3.2: Consider the 16-point FIR filter shown in Fig. 8. This example has 
been studied extensively [3,5,7]. We are assuming the same parameters as in the 
earlier examples. This simple filter consists of 8 multiplication and 15 addition 
operations and has a critical path computation time of 10 units. All operations are 
in the feed-forward paths; therefore there is no recursive section in this filter. In 
this example, the iteration period is assumed to be 3 units, and MARS determined 
that it will require exactly 5 addition and 3 multiplication hardware operators .• 
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output 

Figure 8: The DFG of a 16-point FIR filter. TA = 1 unit, TM = 2 units, and TCRIT = 
10 units. 

3.2. Step 2: Locate Feed-Forward Paths 

MARS locates all feed-forward paths which only consist of non-recursive 
nodes and calculates their path computation time. If a path begins with or ends on a 
recursive node, the recursive node is added to the path only as a starting or ending 
reference point. The recursive node computation time is not included in the path 
computation time. For paths which do not begin or end with a recursive node, 
search for a precedence constraint to a recursive node. There are three cases to con
sider: 1) all non-recursive nodes are predecessors of the recursive nodes; 2) all 
non-recursive nodes are successors of recursive nodes, and 3) some non-recursive 
nodes are predecessors and some are successors of recursive nodes. For the first two 
cases, MARS flags the precedence constraint which minimizes the difference in 
PGH values between the recursive and non-recursive node (see Fig. 9(a) and 9(b)). 
Fig. 9(a) shows an example where all non-recursive nodes are predecessors of the 
recursive nodes. We can see that the precedence constraints of node 7 to node 2, 
node 8 to node 4, and node 8 to node 5 have a difference of PGH values of 1, 1, and 
2 respectively. Therefore MARS flags the precedence constraint of node 7 to node 
2. One can easily see that by referencing the unscheduled nodes from the flagged 
precedence constraint, all other precedence constraints are satisfied. Fig. 9(b) shows 
an example where all non-recursive nodes are successors of the recursive nodes. 
From this figure, we can easily see that the flagged precedence constraint will 
satisfy all other precedence constraints. These flagged precedence constraints will 
be used as reference points when MARS begins the scheduling of the nodes that 
belong to the path. 

The third case can have two possible configurations. If the non-recursive path 
contains a precedence constraint to a recursive node and later along the path has a 
precedence constraint from a recursive node (see Fig 9(c)), MARS breaks the path 
into 2 paths to maintain the proper precedence constraint. Here we see that this 
example can only satisfy all intra-iteration precedence constraints if the path is split 
into two separate paths. One path will end on a recursive node and the other will 
begin with a recursive node as shown in Fig. 9(d). Note that the precedence con
straint from node 7 to node 8 is still satisfied. The other possible configuration 
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(where a precedence constraint from a recursive node to the path occurs first and is 
then followed by a precedence constraint from the path to a recursive node) gen
erates a loop and therefore it will not occur. Next MARS sorts the paths by decreas
ing path computation time and for ties, MARS gives preference to the path which 
contains a node with a larger PGH value. From this ordered set of paths, MARS 
locates a subset of paths, FP, such that FP contains all of the non-recursive nodes. 
The choice of a path to be included in set FP is identical to the technique described 
the section 2.1. 

(e) 

(b) 

POH-4 L- Flagthis 
~ constraint 

POH-S 

L- FlagthiS 
POH - 4 ~ constraint 

7 PGH- 0 

Figure 9: (a) A simple example where all non-recursive nodes are predecessors of 
the recursive nodes. The flagged precedence constraint is from node 7 to node 2 
with a difference of PGH values (t.) = 1. (b) A simple example where all non
recursive nodes are successors of the recursive nodes. The flagged precedence con
straint is from node 10 to node 3 with a difference of PGH values (t.) = 1. 
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Node ~ 
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Break feed-forward path 

(d) 

7 PGH- 6 

Path 2 

187 

L-- ReclI'Sive 
~ Node 

Figure 9: (c) A simple example where a non-recursive nodes has a precedence con
straint to a recursive node and then later in the path, a non-recursive node has a pre
cedence constraint from a recursive node. (d) For cases as shown in Fig. 8(c), 
MARS breaks the path into two separate paths as shown here. One path will end on 
a recursive node, node 1, and the other path will begin with a recursive node, node 
3. Note that the precedence constraint from node 7 to node 8 will also be satisfied. 
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Example 3.3: The filter of example 2.1 contains 10 feed-forward paths which 
only contain non-recursive nodes: 

PI: 17-8-7-6-5-4-3-2-1 Tpl = 10 
P2: 16-8-7-6-5-4-3-2-1 TP2 = 10 
P3: 15-7-6-5-4-3-2-1 Tp3 = 9 
P4: 14-6-5-4-3-2-1 TP4 = 8 
Ps: 13-5-4-3-2-1 Tps = 7 
P6: 12-4-3-2-1 Tp6 = 6 
P7: 11-3-2-1 TP7 = 5 
Ps: 10-2-1 Tps = 4 
P9: 9-1 Tp9 = 3 
PIO: 18-19* TplO = 2 

Example 3.4: The filter of example 3.2 contains 8 feed-forward paths: 

PI: 1-9-17-18-19-20-21-22-23 TpI = 10 
P2: 2-10-17-18-19-20-21-22-23 TpI = 10 
P3: 3-11-18-19-20-21-22-23 TpI = 9 
P4: 4-12-19-20-21-22-23 TpI = 8 
Ps: 5-13-20-21-22-23 TpI = 7 
P6: 6-14-21-22-23 TpI = 6 
P7: 7-15-22-23 TpI = 5 
Ps: 8-16-23 TpI = 4 

3.3. Step 3: Create an Initial Schedule 
To create an initial schedule for the non-recursive nodes, MARS assigns a set 

of columns of the schedule matrices to each path and the rows represent iteration 
time partitions. For non-recursive nodes, the paths are assigned to columns in 
reverse order. Instead of mapping the first set of columns to the most critical path 
(as in section 2.2), MARS assigns the first set of columns to the least critical path. 
The last set of columns corresponds to the most critical path. We do this because 
when MARS resolves conflicts, we want MARS to first exploit the intra-iteration 
precedence constraints before introducing any pipeline stages. When resolving con
flicts, the less critical paths are chosen first since these paths have greater flexibil
ity. At this point, each path is assigned a set of columns in which to schedule it's 
nodes, and the order of scheduling of the paths does not affect the column assign
ment. Now MARS begins the process of building the initial schedule for the non
recursive nodes. MARS searches the set FP for all paths which begin with or end 
on a recursive node and places them into set FP,_ From this subset of paths, MARS 
locates and schedules the paths in an iterative manner as described below: 

while (more unscheduled paths exist in set FP,) { 
Place into set FPp all unscheduled paths which contain at least one previ
ously scheduled non-recursive node. 

If (FPp is the null set) 
Place all unscheduled paths of set FP, into set FPp ' 

Locate the path FPs which has the largest path computation time or 
equivalently, the most critical path within set FPp ' We schedule the most 
critical path first to minimize the number of unscheduled nodes. (Note: 
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Each path has already been assigned a set of columns and the order of the 
path scheduling does not affect the column assignment.) 

Insert the unscheduled nodes of path F P s into the schedule matrices. 

Clear set F P p 

After all paths which begin with or end on a recursive node have been scheduled, 
MARS iteratively schedules the remaining paths of FP in a similar manner as 
described in section 2.2, except for some minor changes. The modified algorithm is 
as follows: 

while (more unscheduled paths exists in set FP) { 
Place into set FPp all unscheduled paths which contain at least one previ
ously scheduled non-recursive node. 

If (set FP p is the null set) { 
Place into set F P p all unscheduled paths which have a flagged pre
cedence constraint. 

If (set FPp is the null set) { 
Place into set FP p all unscheduled paths which have an intra
iteration precedence constraint with a previously scheduled 
non-recursive node. 

If (set FPp is the null set) 
Place all unscheduled paths into set F P p' 

Locate path FPs within set FPp such that FPs is the most critical path of 
setFPp 

Insert the unscheduled nodes of path FPs in to the schedule matrices. 

Clear the set FPp 

When the initial schedule is complete, MARS resolves all conflicts in the same 
manner as in section 2.3, except all paths will have infinite flexibility. The infinite 
flexibility allowed for each path removes any limitations on the number of pipelined 
stages allowed. Although the paths have infinite flexibility, MARS only exploits as 
little flexibility as needed to construct a valid schedule and this minimizes the 
number of pipeline stages added implicitly to the DFG. This approach minimizes 
the number of interconnection registers. The final conflict free schedule generated 
by MARS will be either a non-overlapped or a fully-static overlapped schedule 
depending on the inter-iteration precedence constraints. 

Example 3.5: Continuing with the 4-stage pipelined lattice filter of example 3.3, 
MARS creates an initial schedule from the feed-forward paths as shown in Fig. 
lO(a). Note that from this figure and Fig. 4(a), there exists a conflict in the multi
ply schedule matrix at time partition O. There are 5 non-nonrecursive nodes and 4 
recursive nodes scheduled at that time partition, but the number of multiplication 
processors allocated is 8. Node 10 is the node chosen to be shifted to resolve the 
conflict. After the conflict is resolved, we see that no more conflicts exist and the 
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final conflict-free schedule for non-recursive nodes is shown. in Fig. lOeb). The 
final hardware opemtor count for this example equals the lower bound of 8 multi
plication operators and 6 addition operators. • 

tI .. 
• to, 
o 17 

o 

tI ... 
• 10, 

o 

o 

tI .. 
tIo, 

o 17 

o 

tI .. 
• 10, 

o 

o 

IIJI.TIPlICATIOH 

(a) 

IIJI. TlPlICATIOH 

ADDITION 

(b) 

Figure 10: (a) The initial schedule for the non-recursive nodes of the lattice filter of 
Fig. 3(a). (b) The final conflict free schedule for the non-recursive nodes of the lat
tice filter of Fig. 3(a). 
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Example 3.6: Continuing with the FIR filter of example 3.4, MARS creates an 
initial schedule from the feed-forward paths as shown in Fig. 11. Note that 
because all nodes of this example are non-recursive nodes, no conflict will occur 
and the initial schedule is the final schedule. The final hardware operator count 
for this example equals the exact number required of 3 multiplication operators 
and 5 addition operators .• 

timt A1 A2 A3 A4 AS M1 M2 M3 st.p 

0 1 2 3 17-1 20-2 15-1 16-1 , 
1 4 5 6 1 e-1 2{2 9 10 11 

2 7 6 233 19-1 22-2 12 13 14 

Figure 11: This is the initial and final conflict free schedule of the FIR filter of Fig. 
8. Note that all nodes of this filter are non-recursive nodes. 

4. ALGORITHMIC TRANSFORMATIONS 

There are cases where the iteration bound can be a fractional value (e.g. 1.5) or 
be less than a node's computation time. To synthesize an architecture which is able 
to achieve the maximum sample rate (or equivalently, to have an iteration period 
equal to the iteration bound), we need to perform algorithmic transformations. 
MARS utilizes an unfolding algorithm to help generate the proper architecture 
[12,19]. The unfolding process creates a new DFG which has an increased number 
of iterations but maintains the original functionality. Due to the increase number of 
iterations, the iteration period will increase; however the iteration bound will remain 
the same. MARS generates fully-static overlapped schedules for DFG's which con
tain multiple iterations. 

Example 4.1: Consider the general DFG shown in Fig. 12(a). The computation 
times of nodes A, B, C, D, and E are 20, 5 10, 10 and 2 units, respectively. 
Assume all nodes will be scheduled to some general purpose processor. The 
iteration bound for this DFG is 16 units, which is less than the computation time 
of node A. Therefore, MARS applies the unfolding algorithm to generate a 
2-unfolded version of the DFG (see Fig. 12(b)). The unfolded DFG contains 2 
iterations and the iteration period for the DFG is now 32 (which is greater than 
the largest computation time). Note how the delays are distributed randomly in 
the recursive loops. The initial schedule generated by MARS is shown in Fig. 
12(c) and the final conflict-free schedule is shown in Fig. 12(d). We can see that 
MARS is capable of scheduling this DFG to the iteration bound using 3 proces
sors .• 



www.manaraa.com

192 

(c) 

(b) 

Figure 12: (a) A general DFG with three loops. The computation times of nodes A, 
B, C, D, and E are respectively: 20, 5, 10, 10, and 2 units. The iteration bound = 
TCRIT = 16 units. (b) The 2-unfolded equivalent DFG of Fig. 12(a). Note that the 
DFG consists of two iterations of the original DFG and that even though TCRIT = 
32 units, the iteration bound = 16 units. 
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Time LooP Loop Loop Loop Loop Tim. Prot Proc Proc 
stap 31 32 33 2 1 step I 2 3 

0 • AI 0 1 • 0 • • 01 · I : · · · • I · • · · · 2 · • • • • · 2 • • • · • · 3 • • • • 3 • · • • 
4 · • • • • 4 · · · • • 
5 · • • • • · 5 · · · • • · 6 • : : • 6 .- · · • 
7 'f ~I • • • · 7 ~I · • • • 
B • • • • • B · • · • • 
iii • : 'f · 9 · • 'f • • 
10 CI • • E I · · 10 · • EI • • 
\I • 'f • -" · · 11 .- · .-
12 • • ~2 • • 12 C,I • A2 · 13 · · · 13 · · · · · • 
14 · · · • · · 14 · • • · · 15 • • • · · · 15 • · · · · · 16 · · · • • 16 • · • · · 17 · · · · • • 17 · · • · · · 16 · · · · · · 16 · .- · · · 19 .- .- · 19 · ~2 · · · 20 ~2 02 · · 21 · · · • · · 

20 · · · · · .:-
21 'f · · · 

22 · · · · · · 22 62 · · · · 23 · · · · · • 23 · · · · · · 24 'f · · · • 24 · · · · · · 25 · · · · 25 · · · · · · · · 26 · · 26 · · · · · · 27 · · · · 26 · · · · 
27 · · · · · .:-
26 .- 'f · 29 .- · · 29 Cz E2 · · 30 ~2 E2 · · 

31 
. 'f 'f . 30 · 'f · · :!:-

31 · Al t · 
(c) (d) 

Figure 12: (c) The initial schedule of the DFG of Fig. 12(b). (d) The final conflict 
free schedule of the DFG of Fig. 12(b). 



www.manaraa.com

194 

5. DATA PATH SYNTHESIS 

Given a final schedule and the number of processors, MARS can construct the 
data paths which connect the processors, generate the control circuitry required to 
sample the signals, and determine the number of latches for intra-processors and 
inter-processor communication. The final results are hardwired control based archi
tectures. For a more detailed description of automatic data path generation, see [20]. 
From the final schedule matrices, we can generate a retimed and pipe lined DFG 
which has the same functionality as the original DFG. 

Example 5.1: As we saw in the 4-stage pipe lined lattice filter of example 3.5, the 
final conflict free schedule for both recursive and non-recursive nodes with an 
iteration period of 2 units will require 8 hardware multiplication operators and 6 
hardware addition operators as shown in Fig. 13. From the final conflict free 
schedule, we can also derive the implicitly retimed and pipelined DFG as shown 
in Fig. 14. In this example we see that the new DFG required 3 pipelining stages. 
Fig. 15 shows the final hardware implementation of the filter with all of the con
trol circuits, hardware operators, and latches in place .• 

Example 5.2: As we saw in the 5th-order wave digital elliptic filter of example 
2.6, the final conflict free schedule for the recursive nodes with an iteration 
period of 16 units will require 1 hardware multiplication operator and 3 hardware 
addition operators as shown in Fig. 7. From the final conflict free schedule, we 
can also derive the implicitly retimed and pipelined DFG as shown in Fig. 16. 
Fig. 17 shows the final hardware implementation of the filter with all of the con
trol circuits, hardware operators, and latches in place .• 

Example 5.3: As we saw in the 16-point FIR filter of example 3.6, the final con
flict free schedule for the non-recursive nodes will require 3 hardware multiplica
tion operators and 5 hardware addition operators as shown in Fig. 11. From the 
final conflict free schedule, we can also derive the implicitly retimed and pipe
lined DFG as shown in Fig. 18. Here we see that the new DFG required 3 pipelin
ing stages. Fig. 19 shows the final hardware implementation of the filter with all 
of the control circuits, hardware operators, and latches in place .• 
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time Ml M2 M3 M4 MS M6 M7 M8 step 

0 23 26 
-1 -1 17 16 14-1 122 20 24 

1 -1 -1 15 -1 -2 -2 -3 
Q> 22 18 13 1 1 10 9 

time Al A2 A3 A4 AS A6 step 

0 -1 -2 -1 -2 -3 -4 
25 21 8 6 4 2 

1 -2 
Q> 

-1 -2 -3 -4 
19 7 5 3 1 

Figure 13: The final conflict free combined schedule of recursive and non
recursive nodes of the lattice filter of Fig. 3(a). 

Figure 14: The retimed and pipelined DFG of the lattice filter of Fig. 3(a) as 
derived from the combined schedule generated by MARS and shown in Fig. 13. 
Note that the number of pipelined stages = 3. 



www.manaraa.com

196 

+ 

~~----~-----. 
21 

21+1 

L..------If-----... 21 
~~21D1-... 

~ 
L---------~+-_IN 

Figure 15: The final hardware architecture of the lattice filter of Fig. 3(a) as gen
erated by MARS. 
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Output 

Figure 16: The retimed DFG of the elliptic filter of Fig. 3(b) as derived from the 
final schedule generated by MARS and shown in Fig. 4(a). Note that there are no 
pipelining stages because the filter is completely recursive. 

Output 

17 18 19 20 21 22 23 

Figure 18: The retimed and pipelined DFG of the FIR filter of Fig. 8 as derived 
from the combined schedule generated by MARS and shown in Fig. 11. Note that 
the number of pipelined stages = 3. 
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161+2 
161+3 
161+4 
161+5 
161+8 
161+9 
161+12 

~~ 
161 

~ "i6i:2 
161+3 
161+4 

161+6 
161+10 
161+14 

161+5 Inputs 
161+8 
161+9 
161+ 12 
161+ 13 

output 

Figure 17: The final hardware architecture of the elliptic filter of Fig. 3(b) as gen
erated by MARS. 
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31+ 1 

Figure 19: The final hardware architecture of the FIR filter of Fig. 8 as generated 
by MARS. 
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6. RESULTS 

We now present some results of our scheduling and resource allocation algo
rithm for a set of benchmarks. These results demonstrate the performance of 
MARS. They will show how MARS performs on completely recursive systems, 
completely non-recursive systems, and on general data-flow graphs. In all of our 
tests, we assumed the availability of one stage pipelined adders and two stage pipe
lined multipliers. Table 1 summarizes a few of our benchmark results. For each 
filter type we show the iteration bound T~, the critical path time Tcr and the iteration 
period used to schedule the filter T. The table also shows the types of operations 
and the total number of each type in the original DFG, the lower bound on the 
number of processors required for the given iteration period, and the actual number 
of processors required for the given iteration period. We also show the total number 
of loops in the DFG, the number of loops MARS needed to cover all recursive 
nodes, and the number of loops and loop sections MARS used to complete the 
scheduling, and the cpu times in seconds need to generate a valid schedule when 
MARS is executed on a SUN Sparc2 workstation. 

As we look at the results in Table I, one can see that MARS is capable of gen
erating valid schedules for iteration periods equal to the iteration bound. Most other 
synthesis systems are limited to an iteration period equal to the critical path time. 
The FIR filter benchmark is completely non-recursive and the results show that the 
final number of processors required is always equal to the lower bound. The all
pole lattice filter shows that even though a filter may have many loops (58), only a 
small subset of the loops is required to schedule all of the nodes (4). We also see 
from this example and the elliptic filter example (both of which are completely 
recursive) that the recursive section of a filter is the most restrictive portion of any 
DFG. The 4-stage and 8-stage pipelined lattice filters show that generating a valid 
schedule for an iteration period equal to the iteration bound may not always be 
achieved due to the technology constraints. By using the unfolding transformation 
we see that a schedule with an iteration period equal to the iteration bound can be 
achieved. The 2-unfolded example shows an iteration period equal to 3 units. The 
iteration bound is achieved because this filter contains two iterations within the 

iteration period; therefore, the iteration period for one iteration = ~ or 1.5. A simi

lar example is shown for the 4-unfolded example. In this example, the number of 
iterations is four and the iteration period = 3. Therefore the iteration period for a 

single iteration = ! or 0.75. 

When compared to previous works, MARS produces better or as good results. 
In the worst case, the scheduling complexity is exponential; however Table 1 shows 
that MARS can schedule the filters in less than exponential time. The largest exam
ple has 168 operations and only took 0.866 cpu seconds to generate a valid schedule 
with an iteration period equal to the iteration bound. 
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Table 1: Summary of the results from the MARS design system's scheduling and 
resource allocation algorithms for uniform architectures. TINF is the iteration bound, 
Tcr is the critical path time, and T is the iteration period for the unfolding factor 
number of iterations. 

"gorithmlc 
I.O"Wer ., 
bound hlrdvefe Tot., # loopa/ cpu 

F11terType ., icoverino loop 
TeD Tcr T mult Ide! mult Ide! Ide! loopa time 

mult loopa lICtIom 

2 10 2 6 15 4 6 4 6 0 0 0 0.082 
16-polnt FIR 

2 10 3 6 15 3 5 3 5 0 0 0 0.099 

2nd-order 4 5 
blQued 

4 4 4 1 1 1 1 2 2 2 0.132 

2-cesceded 
blQued 4 7 4 6 6 2 2 2 2 4 4 4 0.149 

6 16 6 4 11 1 2 2 3 58 4 7 0.083 
All-pole lettlce 

6 16 9 4 11 1 2 1 2 58 4 7 0.100 

16 17 16 6 26 1 2 1 3 45 5 5 0.167 
5th order weve 
dlgltel elliptic 16 17 17 6 26 1 2 1 2 45 5 5 0.167 

16 17 28 a 26 1 1 1 1 45 5 5 0.233 

4-stege 1.5 10 2 15 11 8 6 8 6 3 3 4 0.333 
plpellned 
leWce 1.5 10 5 15 11 3 3 3 3 3 3 4 0.399 

a-stege 0.75 18 2 23 19 12 10 12 10 3 3 4 0.232 
plpellned 

0.75 18 10 23 19 3 lettlce 2 3 2 3 3 4 0.366 

2-unfolded 
4-stege 1.5 10 3 30 22 10 8 10 8 6 6 8 0.299 

plpellned 
1.5 10 5 30 22 6 5 6 5 6 6 8 0.299 

lettice 
4-unfolded 
8-stage 0.75 18 3 92 76 31 26 31 26 12 12 16 0.866 

pipelined 
0.75 18 4 92 76 23 19 23 19 12 12 16 1.482 lattice 

9 9 9 11 10 2 2 4 4 10 5 5 0.167 
lMS adaptive 

12 2 9 9 11 10 2 2 2 10 5 5 0.217 

7. THE MARS SYSTEM 

We have implemented our algorithms into the MARS system. In this section 
we present the input and output files of a second-order biquad filter as shown in Fig. 
20(a). This filter contains both a recursive section and a non-recursive section and 
the iteration bound equals 4 units and TCRIT =5 units. Fig. 20(b) shows the input 
description file of the filter. Each line which begins with the character "N" 
represents a node and contains the node characteristics using the following syntax: 
N (node computation time) (pipelining level) (processor type number). If the last 
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field is 0 MARS uses the node computation time to determine the processor type to 
which the node is assigned. As each node line is read, MARS assigns a node 
number which represents the node within MARS. The numbering is sequential. Any 
other information beyond the last field is considered to be comments. Each line that 
begins with the character "E" describes an edge with the following syntax: (starting 
node number) (ending node number) (number of delays). An optional line begins 
with the character "T" which represents the user defined iteration period. If this line 
is not present, it is initially assumed to be zero. Fig. 20(c) contains the output file. 
This file consists of four sections: 

1) A table of the nodes and their relevant information. 
2) The final processor counts for each processor type. 
3) The final conflict free schedule for recursive nodes. 
4) The final conflict free schedule for non-recursive nodes. 

IN our 

Figure 20: (a) The DFG of a second order biquad filter. TA = 1 unit, T M = 2 units, 
the iteration bound = 4 units, and TCRfT = 5 units. 

N 1 1 0 Al 1 
N 1 1 0 A2 2 
NIl 0 A3 3 1 
N 1 1 0 A4 4 
N 2 2 0 MI 
N 2 2 0 M2 
N 2 2 0 M3 
N 2 2 0 M4 8 2 
E 0 
E 1 
E 3 1 0 
E 1 5 
E 1 6 
E 1 7 

E 1 8 
E 4 2 
E 5 3 
E 6 3 0 
E 7 4 0 
E 8 4 
E 2 0 
T 4 

Figure 20: (b) The input file for the biquad filter of Fig. 20(a) which describes the 
node parameters and the topology of the filter. 
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Node # delay processor time partition real time 
1 1 2 0 4 

3 
4 

2 
2 

The number of required processors for this DFG 
scheduled with an iteration period of 4: 
Processor # 1 needs 1 instances 
Processor # 2 needs 1 instances 

4 
3 

This is the conflict free schedule for Recursive nodes 

0, 

10 0 
2, 0 
3, a ( 1 ) 

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& 

a 
10 a a 
2, 3 0 
3, a 

This is the conflict free schedule for Non-Recursive nodes 

0, a 0 0 
10 
2, 0 
3, a a a 

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& 

0, 4 (-1 ) 

10 0 0 2 ( -1) 

2, D a a 
3, a 

203 

Figure 20: (c) The output of the scheduling program of MARS which describes the 
final conflict free schedules for recursive nodes and non-recursive nodes. 

8. CONCLUSIONS 

Using graph based approaches and incremental refinement steps, we have 
developed a new concurrent scheduling and resource allocation scheme and have 
incorporated it into the MARS design system. Our approach exploits concurrency 
among the iterations through the use of inter-iteration precedence constraints Previ
ous work only addressed the synthesis of simple algorithms which contained single 
or lumped delays. MARS is not limited to such algorithms. It is capable of perform
ing scheduling and allocation for more general data-flow graphs. Synthesis and 
issues dealing with such algorithms were not explored extensively before. We have 
eliminated the requirement for preprocessing algorithms for retiming and software 
pipelining because our approach implicitly retimes and pipelines flow graphs as it 
schedules. Future research is directed towards extending MARS for time
constrained scheduling of data-flow graphs with non-uniform implementation 
styles. The extension of the loop scheduling algorithm for resource-constrained 
scheduling is also a topic of further study. 
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The High Perfonnance Architecture Synthesis System (Hi-PASS) is a 
CAD system for DSP architecture synthesis. Hi-PASS generates maximally 
parallel architectures to support DSP applications where the sample rate is too 
high for time sharing of hardware to be feasible. Such applications cannot be 
implemented on a single DSP microprocessor. Real-time execution demands 
either a multiprocessor implementation or dedicated hardware where multiple 
operations are happening concurrently. It is the latter solution which Hi-PASS 
generates using a combination of compiler and optimization techniques. 

This high-level synthesis tool converts a C code description of the DSP 
algorithm into an RTL description of the design. Hi-PASS provides a link 
between the algorithm development environment and the VLSI design envi
ronment which will reduce the overall design time of complex VLSIs. High
level synthesis will enable quick evaluation of feasibility and investigate 
architectural trade-offs early in the design cycle. 
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INTRODUCTION 

Hi-PASS consists of four modules which are integrated using the OCT 
database developed at UC Berkeley. The symbolic interpreter converts the C 
code description of the algorithm into a dataflow graph. The Heuristic Search 
Optimization System (HOPS) optimizes the arithmetic and logic operations in 
the flowgraph. Bit-level retiming is used to minimize the critical path and 
increase the clock rate. Finally, an RTL description is generated for Lager (a 
silicon assembly program) or in VHDL. 

The input to the Hi-PASS system is a C subroutine which describes the 
processing of data on a sample by sample basis. The C code is parsed by a C 
compiler front-end and then symbolically interpreted. The symbolic inter
preter removes all control flow and symbolically executes all operations 
which can be computed at compile time. The output of the interpreter is 
straight-line, single assignment C code which represents the full parallelism 
and the data dependencies of the algorithm. Each variable in the new version 
of the algorithm is assigned a bit length to minimize error propagation and 
hardware utilization. To further reduce hardware utilization, all multiplica
tions and divisions which have a constant as one of the operands are con
verted to an equivalent form of hardwired shift and add operations. 

A data flow graph representation of the algorithm is then constructed 
using the OCT database as a data structure. Two different programs are used 
to minimize the flow graph. The Heuristic Search Optimization System 
(HOPS) minimizes the number of operators in the graph and modifies the type 
of operators to reduce the hardware requirements. The Retiming program 
adds pipeline registers and repositions registers to reduce the critical path 
which improves the overall clock rate of the circuit. Both HOPS and Retiming 
read the data flow graph from the OCT database and then write the optimized 
version of the graph back to OCT. 

Because the sample rate of the system requires that there is no resource 
sharing, no scheduling is required. Each operator in the data flow graph is 
mapped into a unique instance of hardware. Therefore, the optimized data 
flow graph is equivalent to the structural representation of the algorithm. 
There are two versions of data path synthesis supported by Hi-PASS. One 
program in Hi-PASS maps the data flow graph into the standard cell library of 
the Lager system. Another program in Hi-PASS converts the data flow graph 
into a behavioral description of the RTL architecture using VHDL. 
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CFRONTEND 

The goal of Hi-PASS is to link the software development environment 
with the hardware synthesis environment so that software and hardware 
development becomes an interactive process. The C programming language is 
a well established standard and is often used to develop a computer simulation 
of the algorithm in the first step of the design process. By using the C lan
guage as the input to Hi-PASS, the computer simulation of the system can 
directly drive the synthesis process. 

While synthesis based on the C language has several benefits, it also has 
some limitations. One of these limitations is the sequential constraints of 
program execution which are not inherent in the algorithm. The first step in 
the synthesis process removes the sequential nature of the C program and 
converts the algorithm to its inherently parallel form. To fully exploit the par
allelism of the algorithm, all of the data independent control flow is removed 
and the data dependencies are identified. In this process, a data dependency 
graph is constructed to describe the algorithm. 

Standard compiler optimization techniques can be applied to reduce the 
amount of computations, such as dead code removal and constant propaga
tion. Given that a maximally parallel datapath is the target architecture, other 
transformations can be applied to reduce the hardware. For example, division 
and multiplication by a constant can be converted into a series of shifts and 
adds. 

Another restriction of C is that data types are limited to a fixed number of bits 
as implemented on a microprocessor (i.e. 32 bits). An important step in archi
tecture synthesis is the selection of bit widths for all variables and their effect 
on the accuracy of the algorithm. Therefore, in generating the dependency 
graph, all data elements are assigned a bit width value based on the resolution 
of the input variables. 

SYMBOLIC INTERPRETATION 

The first step in the synthesis system is the symbolic interpretation of a C 
program which describes the DSP application, for example an IIR filter. The 
purpose of symbolic interpretation is to remove control flow and other con
structs that would not map directly onto hardware. The output of the inter
preter is straight-line code that assigns a value to each variable only once. 
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This straight-line code corresponds directly to a data flow graph of the appli
cation. 

The C program is expected to contain a separate function which describes 
the operations that must be executed on each data sample. The C function is 
executed symbolically, with the initial value of each input parameter being set 
to its name. For example, the input variable X is set to the expression "X" and 
input variable Y would be set to "Y". When the interpreter encounters an 
assignment statement, such as X = X + Y, the variable X would then contain 
the expression "X + Y", indicating that X contains the sum of the original 
values of X and Y. Executing this assignment a second time (for example 
from within a loop) would result in X being given the value "X+ Y + Y". 

Complications lrise when the program uses arrays, pointers, or data
dependent control flow (such as if and for constructs). An algorithm has been 
developed for interpreting programs with these constructs in contexts that 
appear most frequently in DSP applications. 

When the interpreter reaches the return statement of the function, every 
variable has a symbolic representation of its final value in tenns of the initial 
values. The interpreter then outputs a new C program that contains assign
ments to the program variables - each variable is assigned the final value that 
was computed during interpretation. 

Each subexpression output is computed into a temporary variable so that 
no output assignment statement has more than one operator on its right-hand 
side. Because the interpreter has computed the final values of the variables, 
and because no temporary variable is used more than once, each variable is 
assigned to at most once in the resulting program. 

The output of the interpreter is a C program. This allows the original code 
to be tested against the interpreted code during development of the interpreter. 
A post processing program is then used to translate this restricted form of C 
into the OCT flowgraph format. 

BIT WIDTH ASSIGNMENT 

As mentioned earlier, use of the C language as a front end to synthesis 
restricts data types to be a fixed number of bits. For example, many C 
compilers treat integers has having 32 bits, shorts as having 16 bits, and 
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character variables as having 8 bits. These bit width assignments are conve
nient for program execution on microprocessors, but can cause creation of 
excessive hardware during synthesis. Thus, Hi-PASS provides a method for 
analyzing and minimizing C variable bit widths based on user requirements. 

Bit width assignment occurs in two phases. In the first phase, the C code 
produced by the symbolic interpreter is analyzed and default bit widths (based 
on the C compiler implementation) are assigned to all global variables, static 
variables, and variables used as parameters to the interpreted C function. 
These variables and their associated bit widths are printed in a report file in 
order to allow the user to customize the widths according to his specific 
requirements. 

The report file is then used as a starting point for final bit width analysis in 
the second phase. During this phase, the user specified widths for the global 
variables, static variables, and C function parameters are propagated through
out the C function. Other variables are minimized according to the context in 
which they are used. For example, the C statement 

int test! = y > 100; 

would assign test1 a width of 32 bits. This is unnecessary, however, since the 
result of the comparison operation will always be either true (1) or false (0). 
Thus, testl is assigned a width of 1 during the second phase. 

After all bit width assignments have been made, the resulting code is 
transformed into an Intermediate Programming Language representation 
(IPL). The IPL language is similar to C, but provides syntactic structures for 
specifying bit widths in variable declarations. For example, declaration of 
two, 16 bit variables would be written as follows: 

INT <16> varl, var2; 

The IPL code is then fed to a translation program which converts the code 
into a data flow graph representation, which is in tum stored in an OCT 
database to be used by other programs in the synthesis flow. 

DATAPATH OPTIMIZATION 

Since the high throughput DSP applications being targeted by the Hi-
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PASS system require real-time processing at very high data rates and consist 
of arithmetic intensive operations, a key problem associated with the architec
ture design issue is the optimization of the datapath. Previous work focuses on 
optimization of time-shared datapaths where each physical functional unit 
processes multiple algorithmic operations. A primary measure of optimization 
quality for time-shared datapaths is the degree of resource utilization. In 
contrast, the Hi-PASS system focuses strictly on optimizing the area and 
critical path for the fully parallel architectures to achieve the highest possible 
throughput with no resource sharing overhead. 

The Heuristic Search Optimization System (HOPS) is a datapath optimi
zation system developed to handle flow graphs consisting of arbitrary combi
nations of arithmetic and logic operations. It produces functionally equivalent 
flow graphs that better meet the high perfonnance requirements of the 
targeted applications. One of the keys to obtaining high perfonnance 
datapaths is making maximum use of all opportunities to optimize the arith
metic portions of the system. Much work has been published on methods to 
optimize single or multi-level gate logic, but in general these methods fail to 
produce adequate results when the system to be optimized includes a high 
percentage of arithmetic elements. 

The basic concept of HOPS is to generate a search tree of functionally 
equivalent graphs using a set of arithmetic and logic transfonnations. A 
heuristic search strategy is then employed to direct the traversal of the search 
tree using a cost function based on estimates of area and speed. Several search 
strategies have been investigated, including branch and bound, A *, and best 
first. HOPS is the first system to propose search techniques developed within 
the artificial intelligence community to optimize fully parallel DSP architec
tures. New techniques have also been developed for pruning redundant 
sections of the search tree. The first figure below represents a small search tree 
example. The solution found by the search is Node D, which reduces the 
hardware to two adds and a fixed shift versus two adds and two multiplies for 
Node A. 

The number of occurrences of each type of operator is computed both 
before and after the datapath optimization. The second figure below shows a 
hardware utilization graph in which the module types are shown on the X axis 
and the number of occurrences is shown on the Y axis (dark bars show the 
results before optimization and the light bars show the results after optimiza
tion). The figure shows that for the given application, the number of ADD 
modules increased, but the number of MUL modules was reduced to zero. 
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NODED 

Example Search Tree 
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RETIMING 

The throughput rates for the applications being targeted by the Hi-PASS 
system demand that the critical path of the architecture be optimized to yield 
very short inter-register delay times. It is a well known fact in the design of 
DSP architectures that this goal can be achieved by pipelining (inserting extra 
registers into the computation paths). This technique can reduce the critical 
path length and thus reduce the clock period. A more general form of pipelin
ing is known as retiming. Retiming allows existing registers to be moved 
within the circuit as well as adding extra registers. In order to achieve the high 
performance goals of Hi-PASS, an automatic retiming tool has been imple
mented. 

In addition to implementing the retiming methods presented by Leiserson, 
an important extension to the retiming model has been developed for Hi
PASS. It is sometimes necessary to pipeline bit-parallel arithmetic operators at 
the bit level by inserting registers in operator ripple paths. To accomplish this 
using Leiserson's retiming module requires each n-bit operator to be 
expanded into n distinct nodes. Since the number of nodes in the graph grows 
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by a factor of n, the execution time of the retiming algorithms increases dra
matically. The extension to Leiserson's model allows bit-level retiming to be 
performed without increasing the number of nodes by a factor of n. 

SYNTHESIS OUTPUT 

The ocr flowgraph representation consists only of functional operators 
and represents a register transfer level (RTL) description. This description can 
be output in two different forms. The first form is a structure master view 
(SMV) description based on the standard cell library of the Lager IV silicon 
assembler. The second form is a VHDL description of the datapath that can be 
synthesized into a gate-level netlist using commercially available tools. 

Interface To Lager 

The interface to the Lager IV silicon assembly tools is implemented in a 
program called flow2smv. This program generates an ocr structure master 
view from the ocr flow graph produced by Hi-PASS. The structure master 
view created by flow2smv is a netlist of physical macrocells that have a one
to-one correspondence with the cells in the ocr flowgraph library. The 
purpose of the macrocelllibrary is to provide encapsulation for the underlying 
standard cell library. For instance, the Lager IV standard cell library does not 
include a subtract cell, so the subtract physical macrocell encapsulates adder 
and inverter standard cells. 

There are several steps in addition to library mapping which must be 
incorporated into flow2smv. Several global signals are not present in the ocr 
flow graph description because they are not related to the logical functionality 
of the design. These signals - power, ground, clock, and reset - must be added 
to the SMV for physical implementation. A global reset line is added to all 
registers as a means of forcing the sequential circuits into a known state for 
testing purposes. 

After adding global signals, buffer trees are generated for any signal lines 
that drive high loads. Currently any signal with a fanout greater than three is 
buffered. Typically, the clock signal requires the most buffering, but is treated 
no differently than ordinary data signals. A tree is generated using single 
strength standard cell buffers at all levels and a branching factor of three 
throughput. 
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Finally, input/output latches and pad drivers are optionally added to 
produce a chip core that can be dropped in a pad ring. 

Interface To VHDL 

In order to utilize commercially available tools for gate-level synthesis, 
Hi-PASS provides facilities for converting the optimized and retimed flow
graphs into VHDL representations through the use of a Flow2VHDL (Flow 
Graph to VHDL) translator. This program allows creation of behavioral 
VHDL, structural VHDL, C, and C++ models. 

The behavioral VHDL models produced by Flow2VHDL are similar in 
form to the straight-line C programs produced by the symbolic interpreter, in 
which each line consists of a single assignment and signal operation. 
Flow2VHDL, however, adds clock and reset signals to the design and 
connects them to each register. The reset signal is utilized in the VHDL in 
order to initialize all of the register values during the first clock cycle. 

The structural VHDL models are block level descriptions of the design, in 
which each flow graph operation is constrained to its own hierarchical block. 
Each hierarchical block contains a behavioral description for the block's 
operation based on the previously computed input and output bit widths. For 
example, a VHDL block library produced by Flow2VHDL may contain 
behavioral code for a 4-bit adder, 6-bit adder, etc. These blocks can be indi
vidually synthesized by commercial tools and re-used on multiple designs. 

Production of C and C++ code provides a fast method for verification of 
the synthesis process without having to simulate the code with a VHDL 
simulator. The C programs can be compiled on any standard C compiler and 
the results can be compared with those of the original C program. The C++ 
code allows simulation of the program based on the bit width assignment for 
each variable in order to verify that no underflow or overflow conditions have 
been introduced during the synthesis process. 

SUMMARY 

Hi-PASS is an integrated toolset that provides automatic design flow from 
a C language description of a DSP function down to an ASIC layout. It syn
thesizes maximally parallel DSP architectures for applications where the 
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sample rates are close to the achievable clock rate in the given technology. 
CAD tools have been developed to aid in both the reduction of hardware and 
the reduction of critical path delays. Significant contributions have been made 
in the areas of symbolic interpretation, datapath optimization, and retiming. 
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Abstract 

A data flow and control flow model is presented for use in high level 
synthesis of efficient time multiplexed architectures targeted towards real
time DSP systems. The model is an extension to the polyhedral models 
used in array synthesis techniques. The model features a mathematical 
description of dependencies between individual operations and signal in
stances of multi-dimensional signals for algorithms that can be described 
by Conditional Affine Recurrence Equations. It allows for a general
ization of high level control flow transformations and their steering by 
efficacious optimization methods. The inherent amenity of this type of 
model for these tasks is motivated by examples. Important tasks in high 
level synthesis that can exploit this model are memory management for 
time multiplexed architectures and non-linear transformations for array 
architectures, but also other tasks may benefit. The former task will be 
described in more detail in this paper. 
Performance figures of a CAD tool implementing the model extraction 
demonstrates the feasibility of this approach for the envisaged application 
domain. 

"Research partially supported by ESPRIT programs BRA 3280 and 3281 of the EC. 
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1 Introduction 
State-of-the-art systems for real-time Digital Signal Processing (DSP) can be 
found in a variety of technical domains, ranging from consumer goods (e.g. 
video/audio components, mobile telephone) to means of production and mass 
communication (e.g. robotics, machine vision, satellite systems). Depending on 
the application, different systems and different performance criteria are applied. 
In consumer goods, for example, manufacturing costs and power dissipation are 
usually important performance issues. In production goods, important perfor
mance criteria can be processing speed and also flexibility. 
In many of these cases, advanced systems have to be specially designed for a 
given application to meet the performance criteria under current technology 
constraints. Therefore, Application Specific architectures need to be synthe
sized. 

A primary task in Application Specific (AS) architecture synthesis is the 
extraction of the data flow from a given algorithm description. The term data 
flow is defined here as the combination of operations and dependencies between 
them that define the algorithm. Control flow is defined as a (partial) ordering 
of computations meeting the restrictions of their dependencies. A computation 
is the execution of an operation on its operands. 

Data flow extraction is one of the first tasks in any design trajectory from 
algorithm to architecture realization. A data flow combined with performance 
requirements and system constraints forms a complete specification of a sys
tems component. Formalization of optimization tasks in the synthesis process 
can only be done when data flow and control flow are modeled properly. For
malization is necessary to make globally optimal design decisions, and also to 
be more independent from the wayan algorithm has been specified. 
The synthesis of an application specific time multiplexed architecture for DSP 
applications is a complex task in which the performance criteria have to be met 
without compromising the specified behavior or system constraints. One way 
of dealing with such a complex task is to split it up into subproblems that are 
solved in a certain order with possible iterations over sets of subproblems. The 
method of problem partitioning will depend on the selected target domain of 
applications and the target architectural style, in order to retain efficiency. The 
Cathedral synthesis systems are examples of how this approach can be used to 
automate architecture synthesis [11, 9, 10]. The target domain of applications 
for the Cathedral systems have the following algorithmic properties: 

• Hierarchically nested loops. 

• Locally and globally nested conditions. 

• Recursive signal dependencies. 

• Fixed and varying I/O rates. 

• Large multi-dimensional signals. 
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These properties are commonly found in e.g. video, image processing, telecom
munication and audio applications. The amount of hardware time multiplexing 
that can be used depends on the timing constraints given in a system specifi
cation. Different performance specifications and different types of algorithms 
will lead to different styles of architectures that implement a given system most 
efficiently. These styles differ in e.g the level of hardware multiplexing, the con
troller structures (micro-coded vs hard-wired), memory organization (single vs 
multiple) and the data path composition (general purpose units vs specialized 
heavily pipelined hardware). In the Cathedral system philosophy, different 
styles of architectures are best synthesized by different compilers, each tuned 
towards a particular style [11, 9]. The same applies for some other signal pro
cessing oriented synthesis systems as FACE [8] and Phideo/Pyramid [31]. In 
these synthesis systems an important task that should be performed early in 
the design trajectory is the definition of a management scheme for data stor
age and retrieval in systems. This is called High Level Memory Management. 
The novel data flow and control flow model that is presented in this paper is 
demonstrated by its use in the High Level Memory Management task of system 
synthesis. 

1.1 Modeling data flow and control flow 
The model, which is used in a synthesis process for capturing the data flow and 
control flow, reflects an interpretation of the given algorithmic specification. 
If, for example, loop iterators in the algorithmic specification are interpreted 
as signals which are to be implemented as any other signal in the architecture, 
then these iterators will be modeled as any other signal in the data flow model. 
The same observation holds for control flow modeling. If, for example, loop 
structures in the algorithm are interpreted as control flow specifications, then 
the data flow model will feature loop structure specification, which allows for 
control flow modeling directly on the data flow model. 

At least two factors play a role in determining the interpretation of al
gorithmic specifications. The first factor is the target style of architecture for 
synthesizing architectures from algorithm specifications. The second is the type 
of optimizations which are foreseen in the synthesis process. 

The style of architecture determines to a large extent the most efficient way 
of implementing certain algorithmic features. For example, in a heavily time
multiplexed architecture, the operations described in a loop will be sequentially 
executed on the same hardware. In this case it seems quite natural to implement 
the loop iterator as an actual signal, which can then be used to index multi
dimensional signals inside the loop body. In other architectural styles, like 
systolic or regular arrays (RA's) [23, 9]), the operations within a loop body 
may be executed in parallel on separate hardware. Loop iterators are for this 
style of architecture not seen as signals to be implemented by the hardware. 

The type of optimizations performed in the synthesis process determine 
which aspects of an algorithmic specification are to be taken as a fixed spec-
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ification and which aspects may be changed. Depending on the 'level' of a 
synthesis task this may range from a strict implementation of each and every 
signal and operation, to an implementation with only the specified input-output 
behavior. The 'lower' the level of optimization the more 'literal' the specifica
tion will be implemented. For example, low level scheduling will closely follow 
the loop structure given in the algorithm, while this loop structure is part of the 
algorithm that is to be optimized in High Level Memory Management (HLMM) 
for time multiplexed architectures [59, 13, 30, 57]. This is also the case in high 
level transformations for regular array synthesis [10]. 

1.2 Data- and control flow modeling for HLMM 
In real-time signal processing systems large quantities of data are processed. 
These data are most often expressed as multi-dimensional signals. Process
ing large multi-dimensional signals in real-time poses not only computational 
problems but also storage problems for background memory [49, 58]. In stud
ies of memory management methods [58, 13, 59] it has been recognized that 
the efficiency of a chosen storage scheme is mainly dependent on the relative 
ordering of the execution of computations, which from now will be called or
dering of computations. The task of organizing the multi-dimensional signals 
in background memories is crucial in the synthesis of efficient AS architec
tures. Therefore, it should precede data path synthesis. The task of high-level 
memory management (HLMM) in time multiplexed architecture synthesis is to 
devise an efficient scheme for multi-dimensional signal storage and retrieval. It 
will only produce constraints on the ordering of computations related to multi
dimensional signals. This is different from schedulers that fix absolute cycle 
instances [26, 37]. 

In order to allow for maximal flexibility in control flow optimization, none 
of the possible control flows should be excluded in advance from the search 
space in the memory management task, except those incoherent with a given 
data flow. In other words, the syntactical structure of an algorithm description 
should not be used to limit the set of possible control flows. Nevertheless, this 
structure is often used in architecture synthesis methods to derive a control 
flow, even for non-procedurally described algorithms. It is widely regarded as 
a part of the algorithm specification that has to be implemented instead of 
seeing it for what it is: a syntactical convenient way to describe a data flow. 

Information on the structure of the data flow is in HLMM as important as in 
the synthesis of regular array architectures. Regularity can be exploited to de
rive read-write sequences of signal instances that minimize storage and address
ing costs. Furthermore, the lower complexity of the data flow model obtained 
by exploiting regularity is essential in optimizing global memory managements 
costs for very large multi-dimensional signals. The treatment of individual 
signal instances is in these cases a practical obstacle. The same is true for 
specifying control flow. Examples of this can be found in [58, 57, 30, 52]. 
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2 Conspectus 
Based on the requirements discussed in the previous sections, a specification of 
a novel data flow and control flow model is discussed in section 4. The tradi
tional data flow and control flow model for architecture synthesis for real-time 
signal processing algorithms is the Signal Flow Graph (SFG) [22, 23]. In sec
tion 5 it will be shown that this model does not satisfy the requirements of 
HLMM for time multiplexed architectures. 
The principles of a model that complies with the given specifications are dis
cussed in section 6 and 7. The proposed model exploits for its basic elements 
the vast body of theory, techniques and methods present in the fields of com
binatorial optimization, array architecture design and parallelizing/vectorizing 
compilers. These basic elements are used in a structure that is tuned to high 
level architecture synthesis for signal processing algorithms. 
It will be shown that specifications indicate the need for control flow inde
pendent data modeling. The data flow is given solely in terms of operations 
consuming and producing signal instances and not in terms of loop structures 
and iterators. A signal instance is a single signal of a multi-dimensional signal. 
Control flow is defined in terms of placement of the operations in a common 
space and an ordering vector defined over that space. Control flow transforma
tions can then be easily expressed as a re-indexing (repositioning) of operations 
in the common space and/or as a change in the ordering vector. In section 7.5 
it will be shown that control flow optimizations for HLMM are easier to steer 
and express in the proposed model than in a SFG model. 

model 

optimizing 
transformation 

model 

In this paper it is proposed to replace the direct SFG optimizing transforma
tion by a SFG to PDG (Polyhedral Dependency Graph) model transformation, 
followed by an optimizing PDG transformation after which the result is trans
formed back to the SFG model. 
Section 8 discusses extensions to the model to accommodate non-affine index 
functions. The use of the PDG model for HLMM is demonstrated for a real
life application in section 9. Performance figures for a prototype CAD tool for 
model extraction are given in section 10. 

The introduction of this modeling approach to the field of high level synthe
sis results in the formalization of control flow transformation, which thereby 
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generalizes traditional loop transformations. As a result, control flow opti
mization techniques can be devised that are more general, controllable and ef
ficacious than those based on syntactical structure transformations. Although 
the concept of the type of control flow specification used in this model has 
been known in array synthesis and parallelizing/vectorizing compilers, it has 
never been linked to an appropriate data flow model which enables to steer 
control flow transformations based on dependency analysis. In this paper it is 
motivated that this novel approach changes the way synthesis researchers can 
incorporate the effect of control flow transformations and is a real step forward 
in coping with the complexity of the exploration of control flow alterations. 

3 The algorithm model 
The algorithm model that is used in this paper is a set of Conditional Affine 
Recurrence Equations (CARE's). This model follows the single assignment 
principle. A CARE can be formally defined as: 

with: 

• k is the identification number of the CARE. 

• zn is the set of integer points in an n dimensional Euclidean space R n 
with R the set of reals.i 

• {x E zn. I Ckx ;::: cd defines the set of integer vectors with dimension 
nk over which the CARE is defined. Ck is a m x nk matrix and Ck a 
m x 1 vector. 

• Uk is a multi-dimensional signal which is (partially) being defined by the 
CARE. 

• Ik(x) = Akx + bk is an affine mapping zn. -+ zn u• with nu. the dimen
sion over which Uk is defined. Ak is a nu. x nk matrix and bk is a nu. x 1 
vector. h (x) is an index function. 

• fk 0 is the operation performed by the CARE. Its function may be de
pendent on the value of its operands. 

• V~ is the i-th operand of the CARE with label k. 
. . . nv' 

• li,(x) = AA,x + bi: is the affine mapping zn. -+ Z • with nv,: the di-
mension over which V~ is defined. 

• All matrices and vectors have rational coefficients. 

Note that this model covers only a subset of the characteristics of the algo
rithms in the target application domain, as specified in section 1. Extensions 
to the proposed data flow and control flow model to cover the remaining char
acteristics are discussed in section 8. 
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4 Requirements for a novel data How and con
trol How model 

The following model requirements can be extracted from the discussion of the 
synthesis tasks in section 1.2: 

1. Efficient modeling of the exact dependencies between individual opera
tions, operands and defined signal instances in Conditional Affine Recur
rence Equations (CARE's) (see eq. 1, section 3). 

2. Modeling of the structure of the data flow. 

3. Concise control flow specification, based on the structure of the data flow. 

4. Modeling in terms of expressions which can be directly used in mathe
matical analysis and optimization methods. 

The dependencies referred to in item 1 are those which would result after com
pletely 'unrolling' an applicative algorithmic description. Computations and 
their dependencies made on behalf of signal indexing via loop iterators or con
ditions on loop iterators are not meant by the first item. These computations 
determine the structure of the data flow. Optimization and specification of 
control flow is often based on this structure, as explained in section 1.2. 

If dependencies between individual operations and signal instances are to 
be modeled then they are to be referenced as well. This means that there must 
be basic elements in the model, which are somehow associated with individual 
operations and signal instances, to which to refer. Furthermore, referencing 
must be done in a mathematical way. Assuming that these basic elements 
exist, the structure of a data flow can be represented by mathematical relations 
between the basic elements. Control flow based on structure is then equivalent 
to control flow based on mathematical relations between model elements. These 
requirements lead to the following model specification: 

A: Signal instances and individual operations must be associated with model
elements which can be related to each other by mathematical means. The 
relation between model elements are called dependencies. 

B: The structure of a data flow must be expressed in terms of the model 
elements in a mathematical way. 

C: Control flow specification is based on relations between model elements. 

Item A is illustrated in figure 1. Figure 2 shows how, according to specifications, 
instances of recurrence equations are related to each other by use of the model 
elements. Note that both occurrences of the signal instance a[5] are associated 
with the same model-element. A different signal instance, e.g. a[1O], would be 
associated with a different model-element. The 'model-elements' correspond 
to vectors. Each signal instance is associated with a vector that is unique to 
all vectors associated with signal instances with the same name. Likewise, 
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8 = elanent of type operation 
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Figure 1: Model elements and their relations and associations. 

Recurrence Equation instance: poo: r···· ... · ... · ... ···· ...... ··· ...... ~(~;·i~ ....... · ...... f(·~)Tl 

!~I 
: I I -?"'o-----_. . : ; I;±; ;:t; ,::::.:;' I dependency ! 
i K(P): b[B] = g ( 8[5]) i 
' .. _--------.------------------------------------------------------------_.' 

Figure 2: Recurrence equation relations. 

individual operations are associated with a vector that is unique to all vec
tors associated with individual operations from the same recurrence equation. 
Because of the single assignment principle, the relations between vectors are 
unique as well: a specific individual operation uses specific signal instances as 
operands to define another specific signal instance. The structure of a data 
flow can now be modeled by collecting vectors into sets, defined by polytopes 
(section 6), and by collecting vector-vector relationships into affine functions 
(see figure 3 and section 7). Control flow can then be specified in terms of 
functions on vectors which assign to each vector in a polytope a number (or 
vector) that represents the ordering of the computations associated with that 
vector (section 6.3). 

5 Related work 
5.0.1 SFG models 
Recently, methods have been proposed to alter loop structures in algorithm 
descriptions within the context of AS architecture synthesis (e.g. [57,59,31]). 
The used transformations are based on those applied in optimizing software 
compilers [36, 39]. It has been found difficult to formalize these transform a-

""or individual 
vectoring and relating 

collective 
vectoring and relating 

Figure 3: Capturing data flow structure. 
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tions in terms of the global optimization criteria to be used. The reason for the 
difficulties in the formalization of transformations, leading to these suboptimal 
methods, is the following. By deriving control flow directly from the syntactical 
structure of an algorithm description, this structure determines both data flow 
and control flow. The global relation between syntactical structure, data flow 
and control flow can be quite intricate. Therefore, if local transformations are 
expressed in terms of syntactical structure then both the data flow directed 
constraints on these transformations as well as the quantitative effects of them 
on implementation aspects, like storage efficiency and potential parallelism, 
will be hard to express (especially mathematically). The SFG model, as used 
in most architecture synthesis systems, is based on the syntactical structure 
of the algorithm specification and is therefore not amenable to supporting the 
control flow optimizations as described in this paper. 
Another way in which the SFG model does not comply with the proposed 
specifications is that it does not specify relations between signal instances and 
single operations. This is because nodes in a SFG represent sets of operations, 
while the arcs are simple dependencies that do not take this into account. An 
example is given in section 7.5. 

Sets of linear inequalities are an integral part of the definition of CAREs 
(eq. 1). Consequently, data flow analysis and modification as well as control 
flow specification will be expressed in terms of these sets. Therefore, sets of 
inequalities and operations on sets of inequalities must be fully supported by 
the data- and control flow model. This is clearly not the case for a traditional 
SFG. 

Many tasks in regular array synthesis require an exact knowledge of the 
dependencies between multi-dimensional signal instances. These dependencies 
should be explicitly expressed in a data flow model. They are only implicitly 
expressed in a SFG by a web of operations, iterators and signals formed by 
iterator-, condition- and index constructions. The SFG model is, therefore, not 
suited to support optimization tasks that use these dependencies in optimality 
criteria and/or alter them as part of their task. 

5.0.2 Stream model 
The Phideo compiler [30, 31] uses a stream model for data flow descriptions. A 
stream is defined by mapping a multi-dimensional signal to the time axis by use 
of a linear function. The offset of the stream on the time axis is controlled by a 
scheduler. Dependencies between streams are resolved by symbolic simulation, 
or by solving an ILP problem as discussed in e.g. [40]. Streams of this kind are 
naturally occurring in the target application domain of the Phideo compiler, 
which consists mainly of video applications. 
The drawbacks of the method are the mapping to a time axis, the lack of exact 
dependency descriptions and the size parameter dependent complexity. The 
mapping of a signal to the time axis by a linear function leads to a fragmented 
stream if the domain to be mapped is not rectangular. Fragments are treated 
individually, which means that the model complexity is dependent on the size 
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parameters of the signals involved. This is extremely undesirable. Furthermore, 
the model does not explicitly model individual dependencies between signals 
and operations, which leads to a worst-case dependency characterization. This 
severly limits the model's applicability in global control flow optimization. 

5.0.3 Polyhedral models 
The different algorithm models, such as CAREs and UREs, can be regarded 
as different data flow models for regular- or systolic array synthesis. Most 
array synthesis systems that use these models (a.o. [12, 41, 33]) expect the 
algorithm specification to be given according to the model. If not, then nested 
loop programs, like Fortran do-loops, are converted into the appropriate model 
(e.g. [6]). These models are closely related to the model proposed in this 
paper. They also associate vectors to operations and collect these vectors in 
polyhedrals. However, in most RA data flow models the operations from all 
recurrence equations which appear in the same loop body are in a fixed way 
associated with vectors from the same space. One of the aspects in which 
the model proposed in this paper differs from the other models is that vector 
associations are more flexible. This is needed because fixed associations un
necessarily restrict control flow optimizations. Furthermore, relations between 
operations and signal instances are not explicitly defined in data flow models 
derived from algorithm specifications. These relations are needed if arbitrary 
affine index functions on multi-dimensional signals are allowed in algorithms 
consisting of several depending nested loop structures. Advanced control flow 
optimization techniques [53, 54] need this information to be explicitly modeled. 

The type of RA synthesis tasks which have been investigated up till now in 
array synthesis did not prompt the development of a data flow model beyond 
an exact copy of an algorithm model. The only exception to this might be 
the Dependence Graph (DG) [23, 28, 2]. Each node in this graph represents 
a single operation and each arc represents a single dependency. The size of 
the graph depends on the size of the problem. Clearly, this is not a very 
convenient data flow model when problem sizes are large, as they often are 
in real-time signal processing. Furthermore, useful information encapsulated 
by a recurrence equation on common characteristics of sets of operations and 
dependencies is lost in a DG. This complicates most synthesis tasks. 

5.0.4 Parallel computation models 
The problem of dependency analysis has been addressed extensively in opti
mizing compilers for parallel/vector computers [36, 39, 55]. Initially the goal 
of these compilers was not to explicitly describe the existing dependencies, but 
to indicate the operations that have no dependencies. This information de
scribes the parallelism available in an algorithm, which is used to maximize 
the parallel execution of operations. The data flow models and optimization 
strategies developed for these compilers are related to a sequential algorithm 
model, which is different from the non-sequential CARE model. 

Recent work in this field shows an increasing interest in the overhead ass0-

ciated with parallel computation, like load balancing and data communication 
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[38],[1] and [21]. When these factors are taken into account, then the problems 
to be solved by parallelizing/vectorizing compilers become closely related to 
those of array synthesis methods that map algorithms to fixed Single Instruc
tion Multiple Data (SIMD) machines. In fact, an efficient array architecture 
can be regarded as a perfectly balanced parallel computer with 100% resource 
utilization. As a consequence of these problem similarities, data flow and con
trol flow modeling are also modeled in an increasingly similar way. In [38], sets 
of Uniform Recurrence Equations (UREs) are modeled by use of a Reduced 
Dependence Graph (RDG), a widely used model in systolic array synthesis 
[23, 63, 43]. Also in [61] UREs are used along with unimodular transforma
tions to formalize 3 types of loop transformations. Since UREs are a subset 
of CAREs, this model is too limited. A rudimentary data flow model capable 
of expressing a limited subset of UREs is described in [1]. The limitation is in 
the shape of the domains of computation that are considered (rectangular and 
hexagonal). 
However, publications in this field indicate a rapid development of the data
and control flow models in the direction of the model presented in this paper. 
Developments in this field should be much closer watched than they have been 
up till now in the high-level-synthesis community. 

6 The principles of the proposed model 
Interpretation of specification 
The key to the model specified in the previous section is the assignment of 
vectors and the extraction of structure information from an initial algorithmic 
specification. This assumes a certain interpretation of an initial specification by 
an applicative algorithm description. In this paper the following is proposed: 

1. A set of nested loop iterators defines a lattice {x E zn} in an Euclidean 
n-space. 

2. Inequalities on iterators imposed by conditional expressions and loop 
boundaries define sets of points belonging to the lattice. 

3. Loop- and condition structures do not specify or imply a control flow. 

The first two parts of the interpretation allow for an efficient modeling of data 
flow. The last part allows for a control flow specification that is independent 
from the Ioop- and condition structures by which the data flow is initially 
specified. 

Restrictions on nlOdeling 
1. The data flow modeling is only exact when signals are indexed by affine 

functions of iterators and conditions are affine inequalities on iterators. 

2. Control flow is specified by an affine function on vectors, associated with 
operations, in a single Euclidean n-space. 
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The first restriction poses problems in HLMM, where data-dependent and non
linear indexing and conditioning are frequently encountered. In [14] proposals 
are made for extending the model to feature correct data flow modeling under 
these types of indexingj conditioning. The second restriction has not yet found 
to of influence in practical examples of target domain applications. 
In the target domain of HLMM for lightly multiplexed architectures manyopti
mal storage schemes have found to be a concatenation of relatively large pieces 
of signal sets which can are addressed in an affine way [58]. The model pro
vides the means to re-index these pieces individually, after which a single affine 
ordering function suffices. 

The different parts of the interpretation and the usefulness of the model 
under the given restrictions in control flow optimization tasks will be motivated 
and illustrated in the remainder of this section. 

Algorithmic descriptions 
Two different types of algorithmic descriptions will be used, in addition to the 
CARE description: 

• An applicative description, i.e. implying no ordering of operations, except 
for those inferred by the data dependencies. 
This type of description is a syntactical short hand notation for specifying 
nothing more than a dependency graph. The iteration syntax is defined 
by: '( index-name: range) ::' and a unit step size. 
(similar to the Silage-language style [22] and related to a SFGjDSFG 
[24]) 

• A procedural description, i.e. implying a sequential ordering of opera
tions. 
The iteration syntax is defined as: 'for index-name = range do .. od' and 
a unit step size. 
(similar to the Fortran style) 

6.1 Loop iterators and lattices 
A loop iterator x represents an element of Z. A set of n nested loops define an 
n-tuple of loop iterators (Xl, ... , xn). This n-tuple represents a vector or point 
in an Euclidean n-space [25]. The set of vectors which can be represented by 
n loop iterators from a set of n nested loops is a subset of zn. Loop iterators 
of loops which are not nested are not part of the same tuple defining a vector. 

The space set up by loop iterators has been given various names in liter
ature, a.o.. index space and iteration space. Each recurrence equation has its 
own Euclidean space associated with it. Because a recurrence equation is spec
ified by a node in a SFG, the space is called aNode space. 

The lattice specified by a set of n nested loop iterators can be different from 
zn if a 'step' is associated with each iterator. For example: 
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6 0 0 0 0 

(i: ... ) step 2 :: 
defines lattice:---+ 

3 0 (Il) (Il) Gl) 

(j : ... ) step 3 :: 

0 
0 2 4 6 8 

Only the first quadrant is shown for this example. In general, a lattice may be 
defined as {y E nm : y = Az,z E zn} by a set of nested loops, with A a m x n 
matrix with integer coefficients. 

In the rest of this paper it is assumed that no steps are specified with loops. 
Therefore, lattices are always zn. Extensions for lattices different from zn are 
considered in [14]. 

6.2 Loop boundaries, conditions and sets of lattice points 
A recurrence equation in an applicative algorithm description is defined within a 
set of nested loops and, possibly, under a set of conditions. The loop boundaries 
and conditions define a region, or domain, of the lattice set up by the loop 
iterators on which the recurrence equation is defined. Consider the following 
example: 

(i: 1..10) :: 
(j : 1..i) :: 

"recurrence equation" 

defines domain:---+ 

i,j E Z: 
i ~ 1 and 
i ~ 10 and 
j ~ 1 and 
j~i 

In general, a loop definition (z : b1 •• b2 ) in which b1 and b2 are affine expressions 
of other loop iterators and constants, defines two inequalities: z ~ b1 and z ~ 
b2 • In the following example a condition is added to the recurrence equation: 

(i: 1..10):: 
(j : 1..i) :: 

if (i =I 5) 

defines domain:---+ 

... , 

The domain over which a recurrence equation is defined is specified by the 
union of inequalities defined by the loops and by the conditions belonging to 
that recurrence equation. Different recurrence equations from the same loop 
body can therefore be defined over different domains. 

The convex grey regions P and Q are the polytopes which make up the 
complete domain over which the recurrence equation is defined. A polytope 
is a bounded polyhedron. A polyhedron is a set of points that satisfy a finite 
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number of linear inequalities [34]. The points that are considered here are all 
elements of zn. Therefore, in the context of the data flow model, a polytope is 
a set of elements of zn that satisfy a finite number of linear inequalities. For 
example: 

and c = [ ~ 1 
-4 

The inequalities which bound P: i - j 2: 0, j 2: 1 and -i 2: -4 are given by 
the matrix expression Cx 2: c. Issues concerning the extraction of polytopes 
such as how to obtain a set of non redundant inequalities and using extreme 
points as an alternative description of a polytope are dealt with in [53]. 

Note that in equation 1 (section 3) the domain of a CARE is given by a 
single polytope CkX 2: Ck. Two CARE's are therefore needed to express the 
recurrence equation of this example, one for each of the polytopes. 

The importance of using polytopes to indicate sets of points is that it is 
precise, concise and allows for easy dependency analysis without symbolic sim
ulation. Furthermore, many powerful mathematical methods and techniques 
are available for handling polytopes [34, 46]. These methods and techniques 
can be readily used in the analysis and optimization of problems which rely on 
polytopes for their modeling. 

Definition 1 Operation Placement is the association of vectors E zn with op
erations of a recurrence equation, where the vectors are defined in the Euclidean 
n-space set up by the n nested loops in which a recurrence equation is defined. 

Example 1 

(i: l..n) :: 
ali] = J(a[i - 1]); 
~ I 7--;--:-;-";'-: i 

The set of vectors defined by the loop boundaries is given by {i E Z : i > 
1 1\ i $ n}. For each vector in this set, a specific operation is performed on 
a specific operand and assigned to a specific signal instance. This assignment 
of vectors to specific operations is depicted by the placement of dots on a line 
in example 1. The dots represent operations, and their position on the line 
represents their corresponding vector in the Euclidean I-space. For example, 
operation f(a[3]) is placed on point (4). The arrows in the figure represent 
dependencies between the operations defined by the recurrence equation. Note 
that the dependency belonging to the assignment a[l] = J(a[O)) is not present 
in the figure. This is because the operation which assigns a[O] its value is not 
defined by the given CARE, therefore it has not been assigned a vector in the 
Euclidean I-space belonging to that CARE. 
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6.3 Control flow specification by ordering vectors 
Example I describes a data flow but not yet a control flow. A procedural 
interpretation of the Silage code in that example would lead to the control flow 
depicted in the following figure: 

Example 2 

for r=l to n 
a[r] = f(a[r-l]) 

The placement of the operations by the CARE is also given in this figure. 
A control flow, which is a partial ordering of computations, can be described 
by an ordering of the corresponding operations. If to each operation a unique 
vector is assigned, then an ordering can be defined by a function TO of these 
vectors. In example 2, the function T( i) = i would specify the ordering given 
in the procedural description. 
Note that this function defines a relative ordering of operations and not a sched
ule in terms of cycles. Schedules are orderings on the execution of operations 
in terms of an absolute time axis. Scheduling is done later on in the synthesis 
trajectory. The function indicates that the computation a[l] precedes that of 
a[2J, or a[l] -< a[2J, since T(l) < T(2). The same relative ordering would be 
given by e.g. T( i) = 2i or T( i) = IOi. Because T( i) is linear in i, it can be 
represented by a vector. The bold arrow in the example 2 indicates the order
ing vector corresponding to T(i) = i. The inner product of this vector with a 
vector assigned to an operations will give the operation's relative order. 

Clearly, there is usually more than one way in which a certain control flow 
can be specified by a placement of operations and an ordering vector. Consider 
the following example: 

Example 3 

(k : l..n) :: 
b[k] = g(c[k]); 

(l : l..n) :: 
a[fj = f(b[l]); 

Suppose we want to define a control flow for this data flow which corresponds to 
a procedural interpretation of the applicative code: b[l] -< ... -< b[n] -< a[l] -< 
... -< a[n]. Figure 4 gives a procedural code with this control flow. The total 
set of operations is defined over two different recurrence equations. They are 
therefore initially placed in two different Node spaces. If a global relative order 
is to be defined by means of operation placement and a single ordering vector, 
then all operations should be placed in a common Node space. Figure 4 shows 
just two of many possible ways to do this. In figure 4a, all signal instances are 
placed within a common I-dimensional node space 'zl' with ordering function 
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, 6 7 8 

a) 

j .. 

iffij~tillL 
1 2 3 .. 

b) 

for r-l to n 
do 

b[r] • g(c[r]); 

od; 
for r=l to n 
do 

a[r] .. f(b[r]); 

od; 

Figure 4: Two different ways of expressing the same control flow (n=8). 

TZ 1(S) = s. The same ordering can be obtained by an alternative placement 
and ordering function TZ2(i,j) = i + nj, as shown in figure 4b. This ordering 
is also described by the procedural code on the right. 

Definition 2 If the ordering vector is represented by a row vector IT, then 
the operations on two points p, q in the common node space have an execution 
ordering given by ITp and ITq. If ITp < ITq then p will be executed before q. The 
constraints on IT are: if there is a dependency dpq between point p and q then 
IT must be chosen such that ITdpq ~ O. 

The line i + nj = c in figure 4 represents the equi-ordering line, i.e. opera
tions on this line are ordered at the same ordering point. The order increases 
in the direction of the ordering vector IT, which is perpendicular to this line: 
IT( i j)T = i + nj = c. It is clear that for a given placement only a small set of 
relevant linear orderings exist. 

Note that the concept of using a vector to schedule operations which are 
placed in an Euclidean space has been used extensively in systolic array syn
thesis [33, 41] and is known in parallelizing/vectorizing compilers [48]. 

6.4 Formalizing control flow transformations 
The formalization of control flow transformations by use of the placement and 
ordering vector definitions will be illustrated by showing how a number of well 
known loop transformations [57, 59, 18, 39, 36] can be elegantly described by 
this technique. The impact of the formalization of these transformations on 
HLMM is demonstrated here by use of a much simplified memory cost model. 
In the examples used in this section, the memory cost is modeled as being 
directly proportional to the maximum number of signal instances to be stored. 
A more complete overview of the aspects that determine memory cost is given 
in section 9. 

6.4.1 Loop merging/fusion 
Loop merging is, as all loop transformations, defined in terms of procedural 
code. Loop merging applied to the procedural code of figure 4 can be expressed 
as follows. 
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Figure 5: Loop merging represented as a change in ordering vector. 

Example 4 

for r=l to n 
do 

b[r] = g(c[r]); 
od; 
for r-l to n 
do 

a[r] - f(b[r]); 
od; 

loop merging-

for r=l to n 
do 

b[r] = g(c[r]); 
a[r] • f(b[r]); 

od; 
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The same transformation of control flow can be obtained by changing the or
dering vector in figure 4b from TIl = (1 n) to IT2 = (2 1), as shown in figure 
5. The importance of this transformation in example 4 is that the number of 
signal instances of bD to be stored has been reduced. For TIl a maximum of as 
much as n signal instances have to be stored, while for IT2 this is only 1 signal 
instance. These signal storage figures can be easily extracted by determining 
the maximum number of dependencies that cross the equi-ordering hyperplane 
at any position in space. 

Loop fission or iterator splitting is the inverse transformation to loop merg
ing, and can be described by the inverse ordering vector transformation. 

6.4.2 Loop foldingjwinding/pipelining 
Loop folding is a control flow transformation used in schedulers and compilers 
to introduce functional pipelining [18, 16, 39]. It allows operations from a 
sequence of loop iterations to be executed in parallel. Although this type of 
optimization has only recently been introduced for schedulers in high level 
synthesis, it has been the basic principle of systolic array synthesis since its 
conception. It shouldn't be surprising then that this transformation can also be 
easily described in the proposed control flow model. In compilers a procedural 
model is used but without real optimization with a clear objective function. 

Consider again the example of figure 4b. Loop folding is performed, just 
as loop merging, by changing the ordering vector. Figure 6 shows an ordering 
vector change from III = (1 n) to 113 = (2 3) for the given placement of 
operations. The corresponding procedural code is given in the same figure. 
Setting 114 = (2 2) corresponds to an ordering in which both gO and 10 
operations may be executed in parallel and two signal instances b[P] and b[p+ 1] 
can be accessed at one time point (figure 7). In a similar way various degrees 
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J 
2i + 3j =c 

1 

b[l] = g(c[l]); 
for p=l to n-l 
do 

b[p+l] = g(c[p+l]); 
a[p] = f(b[p]); 

od; 
a En] = f (b En] ) ; 

Figure 6: Loop folding represented as a change in ordering vector. 

2i + 2j =c b[l] = g(c[l]); 
for p=l to n-l 
doparallel 

a[p] = f(b[p]); 
b[p+l] = g(c[p+l]); 

odparallel; 
a En] = f(b En] ) ; 

Figure 7: Loop folding with operations which are executed in parallel. 

of folding can be selected by setting different II vectors. Note that one more 
signal instance must be stored than before folding. 

6.4.3 Loop migration/ swapping/ switching/ interchanging 
This transformation changes the nesting of loops in a procedural description 
or procedurally interpreted description of an algorithm. 

Example 5 

(i : l..n) :: 
(j: l..m) :: 

a[i,j] = !(a[i -1,j]); 

procedural 
interpretation --+ 

for p=l to n 
do 

for q=l to II 

do 
a[p,q] = f(a[p-l,q]); 

od; 
od; 

The control flow belonging to the procedural interpretation of example 5 is 
described by the procedural code and by figure 8a. The ordering vector III = 
(m 1) corresponds to the procedural interpretation of the Silage code. The 
ordering indicated by III causes a maximum of m signal instances to be stored. 
Loop migration is now performed by defining I12 = (1 n). Figure 8b shows the 
new ordering vector. Note that for N = max(n, m) the vectors IIi = (N 1) 
and I1~ = (1 N) would define the same orderings as III and I12 respectively. In 
a procedural description this transformation corresponds to changing the loop 
hierarchy: 
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Figure 8: Loop migration represented as a change in ordering vector. 

for q=l to m 
do 

for p=l to n 
do Loop migration ---t 

for p=l to n 
do 

for q=l to m 
do 
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a[p,q] f(a[p-l,q]); 

od; 
a[p,q] = f(a[p-l,q]); 

od; 
od; od; 

The ordering indicated by Ib = (1 n) requires only a single storage location 
instead of m locations before migration. 

6.4.4 The steering of control flow transformations 
Some of the loop transformations described in this section, like loop folding, are 
control flow transformations which can be described by a simple transformation 
of the ordering vector. For regular array synthesis, the selection of an optimal 
scheduling vector has been the subject of much research [33, 45, 42, 62, 64]. 
For HLMM this research is still in its initial phase. It is clear though from 
the examples that the effect on the storage cost can be orders of magnitude 
for applications with multi-dimensional signal processing with large iterator 
bounds. Ordering vector selection for HLMM will be discussed in section 9. 

Other transformations, like loop merging and loop splitting/unwinding, re
quire a transformation of the operation placement given by the CARE's. The 
steering of this type of transformation is discussed in [51, 53, 54]. 

6.5 The efficiency of the grouping of operations 
The way in which vectors are assigned to operations, and vectors are clustered 
in polytopes constitutes a certain grouping of operations. This grouping is 
done according to the specified CARE's. Although this is a compact way of 
expressing information, it is not necessarily efficient in the synthesis process. In 
the loop transformation examples, the operations could be group-wise placed to 
obtain the desired control flows. In [53, 54] it is shown that polytopes sometimes 
have to be split in order to allow for more optimal placements. A method for 
polytope splitting is given in [53]. The proposed grouping of operations is only 
efficient for control flow optimization tasks in which this grouping does not 
have to be drastically changed. 
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7 The data flow model 
The data flow model is based on the algorithm model for RA architecture 
synthesis: CARE's. The goal of the model is to represent the data flow in a 
way that is as independent as possible from the way in which the algorithm 
has been expressed in CARE's. Specifically, independence of absolute loop 
boundary values, loop structures and absolute inequality values is obtained. In 
this way the designer or synthesis system is presented with a data flow model 
in which these degrees of freedom are made explicit and can be used while 
preserving behavior. 

It is assumed that the operations defined by the CARE's are atomic oper
ations. If an atomic operation is composed of a set of more basic operations 
then these are not individually present in the model. The decomposition of 
atomic operations is only performed at the transition of abstract operations to 
hardware operators. From now on an 'operation' indicates an 'atomic opera
tion'. 

The conversion from a certain algorithm model used for specification to 
CARE's is often ambiguous. This is also the case for the conversion from Silage 
to CARE's. This conversion incorporates much of the interpretation made by 
the synthesis system of the algorithmic specification. It results in a certain 
choice of atomic operations and a choice in how to deal with the discrepancy in 
expressive power between the two models (see [53]). In order not to complicate 
the explanation of the model in the following section, it will be assumed that 
a recurrence equation in Silage corresponds to a CARE, and that its domain 
of definition can be defined by linear inequalities. Details on how to deal with 
algorithmic descriptions that do not satisfy these conditions are given in [53]. 

There are two basic types of dependencies in the data flow model: 

• the dependency between an operation and the signal instance which it 
defines . 

• the dependency between an operation and a signal instance which it uses 
as operand. 

The representation of these two dependencies in the data flow model and their 
extraction from an initial algorithmic specification is discussed in the following 
two sections. 

7.1 The operation space 
The value of any signal instance is defined only once by a specific operation, 
because the algorithmic specification is assumed to be in single assignment 
code. Therefore, there exists a one-to-one relationship between operations in 
the node space and signal instances. This relationship, or dependency, can be 
modeled by an affine function between points in the node space (representing 
the operations) and points in the operation space of the signal. The points in 
the operation space are assigned to signal instances. Each operation space is 
therefore associated with a single specific multi-dimensional signal given in the 
code. The i-th coefficient in a vector in the operation space corresponds to the 
i-th index of the signal being defined by the recurrence equation. 
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EXaIllple 6 

node space 

(i: 1..5) :: 
a[i + 2] = f( .. . ); 

operation space 
'a' 

The affine dependency between the spaces is specified by the multi-dimensional 
expression used to index the left hand side signal in a recurrence equation. This 
expression is the affine transformation which maps the polytopes in the node 
space to polytopes in the operation space. The result is that by applying a 
simple base transformation to the node space polytopes an exact description is 
obtained of the operation to signal instance dependencies. 

The affine transformation can be expressed as y = Ax + b, with A an 
m x n matrix and the number of indices of the signal being defined is m and 
the dimension of the node space is n. Note that a correct signal assignment 
code may result in a singular A. However, there always exists an equivalent 
transformation with a non-singular A if : 

1. the algorithmic description can be represented by CARE's (single assign
ment). 

2. the dimension of the node space polytope and operation space polytope 
are equal. 

(i: 1..5) :: 
(j: 1..5) :: 

a[i,i] = if (i == j) 
- > f( .. . ); 

A=[~ ~] 

equivalent 
code: 

(i: 1..5) :: 
(j : 1..5) :: 

a[iJ] = if (i == j) 
- > f( .. . ); 

In [53] the details are discussed on how to obtain a non-singular equivalent of 
A for all types of singularities. How to check the given code for correct use of 
the single assignment principle is also discussed in [53]. Note that the second 
criterion is easily satisfied by extending the dimensions of one of the spaces. 

If the criteria for non-singularization of A are satisfied, then there is a link 
between node space and operation space polytopes which can be represented 
by an invertible affine function: 

f(x) --+ 
Node space +-- f-l(X) Operation space 
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7.2 Composite operations 
Some operations are composed of a set of other operations. Associating all 
the operations in a set with a single vector in a node space may not allow 
for enough flexibility in control flow specification (see next section). An easy 
way to make the composing operations 'visible' in the model is to extend the 
dimension of the node space. If a single operation is composed of k operations 
, then k dimensions can be added to the node space. The composing opera
tions are placed on orthogonal vectors in this space. This will allow for any 
possible internal schedule to be described by a linear function. In this way, 
also control flow transformations like retiming can be described in the model 
and, more importantly, be combined with all other kinds of control flow trans
formations in a single global optimization problem. An example of this would 
be a composite operation consisting of a multiplication and addition. In order 
to increase hardware utilization, each of the components may be placed in per
pendicular subspaces. In this wayan ordering vector may be chosen such that 
the components are not get the same order, allowing for a pipelined use of the 
corresponding hardware units. 

7.3 The operand space 
Each operation represented in the node space uses certain signal instances as 
operands. This is not necessarily a one-to-one relation, since a set of operations 
may use the same operand. Therefore, the affine function which maps node 
space polytopes to operand spaces may be singular. Each operand space is 
associated with a certain multi-dimensional signal. For each operand of an 
operation, a separate operand space is derived. The i-th coefficient in a vector 
in the operand space corresponds to the i-th index of a signal being used by 
the recurrence equation as an operand. 

Example 7 

node space 

(i: 1..5):: 
... = f(b[i - 1]); 

operand space 
'b' 

The mapping process is almost identical to that of mapping to operation spaces, 
except for an extra polytope projection which can be performed as a result 
of broadcasting. In broadcasting, a single signal instance is used as operand 
by multiple operations. This many to one mapping results in a reduction of 
the dimension of the polytope on which the operations are defined when it is 
mapped to the operand space of the operand signal. Details can be found in 
[53]. 
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Figure 9: Summary of relationships for a single recurrence equation. 

The link between node space and operand space polytopes can be repre
sented by an affine function: 

Node space f(x) ~ Operand space 

7.4 The affine polyhedral dependency graph 
The structure of spaces, polytopes and dependency-functions described in the 
previous sections is summarized in figure 9 for a single recurrence equation. A 
single recurrence equation may be associated with multiple polytopes, each in 
their own node space. Dependencies between operations are derived via the 
operation and operand spaces. Each polytope in a node space is represented 
by a node in a graph. The dependencies between the operations are specified 
by arcs between the polytopes to which they are associated. Each arc is asso
ciated with a dependency function, which expresses the dependencies between 
individual operations in a collective way. 
The inverse dependencies are frequently needed in optimization tasks. For ex
ample, the inverse dependency is needed to find out the actual flow of data, 
which involves a mapping from operand space to node space. [53] deals with 
this problem. 

Figure 10 gives an example of a recurrence equation with internal depen
dencies. Figure lOa shows the different spaces and their polytopes. Since both 
the operation space and operand space are defined for signal 'a', there is a 
one-to-one relationship between vectors assigned to signal instances of 'a' in 
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H·, ....... , ....... xxxt

i 

p 

(I : 1 •. n):: 
a[l] = g( a[l-I] ); 

operation space 'a' 

1 Q n 
H '**!d!x. i +-

R n-l 
f--

index 

intersection 

1 S Hi. 
index 

n-l 
~ 

Figure 10: Example of recurrence equation with internal dependencies. 

the two spaces. This is expressed in figure lOb by the identity function I. 
The identity relation between operation and operand spaces of the same multi
dimensional signal makes it possible to check dependencies between recurrence 
equations by checking whether the polytopes defined in the spaces have a non 
empty intersection. In figure 10 Q and R have a non empty intersection S. 
The internal dependency function of P can be easily extracted by computing 
f(i) = !2Ul l (i)), which follows from the path of the dashed arrow in figure 
lOb. The dependency function f(i) is defined by going from node space to 
operand space to operation space to node space. The reason for this choice 
is that node space to operand space mapping functions often do not have an 
mverse. 

Figure 11 extends the example by adding an extra operand. This is an 
example of how two recurrence equations, described in different loops, can be 
related to each other via functions between their node space polytopes. A more 
complex example can be found in section 9. 

7.5 Comparison to the SFG model 
The loop folding transformation as described in section 6.4, figure 7, in terms of 
the proposed model is now described in terms of a SFG [24]. The goal is to show 
that both measurable optimization criteria as well as transformations are much 
harder to describe in terms of the elements of the SFG model than in terms 
of the elements of the proposed model. Figure 12 shows the SFG belonging 
to the result of loop merging on example 4. The circles indicate SFG nodes. 
The dots denote indexing of multi dimensional signals by other signals in the 
SFG. Note that relations between signal instances are not explicitly defined 
in the SFG. Signal instances are referenced by indexing but are not explicitly 
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Figure 11: Extended example with relations between recurrence equations_ 

(r: l..n) :: 
begin 

b[r] = g(c[r]); 
a[r] = f(b[r]); 

end; 

Figure 12: A Silage code and its SFG 

b[r] 

a[r] 
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b[l] = g(c[l]); 
(r: l..n - 1) :: 
begin 

a[r] = I(b[r)); 
b[r + 1] = g(c[r + I)); 

end; 
a[n] = I(b[n)); 

~----------------------~ I c c[r+l 0 b b[r+l] 1 
I 
I 
I 
I 
I 

AI 
I 
I 
I 
I 
I 

l b a[r] 
,-----------------------
r----------------------~ 

I' c c[1] G() b b[ll 'I 
B I or 0'el or - I 

I ill ill I ,----------------------_/ 
,----------------------~ 
( [!!] [!!] 1 

c : J olfO' J ° : 
I b b[n] ~ a a[n] I ,----------------------_/ 

Figure 13: The Silage code after loop folding and its SFG 

related. For example, the signal instances b[r] resulting from the node gO are 
not related in the SFG to the instances b[r] used by 10. They are 'recreated' 
by separate indexing. Relations between signal instances and single operations 
must be derived by symbolic simulation or analysis. 
The major problem with SFG is, therefore, that nodes and signals in the SFG 
represent sets of individual operations and signal instances, while the arcs in 
the graph are related to lines of code and signal names. 
This mismatch of model elements prohibits the use of measurable entities based 
on mathematically defined relations. 
The transformation on the SFG leads to the creation of 3 subgraphs (figure 
13). Figure 14 shows the loop folding transformation in terms of the proposed 
model. What in the proposed model is obtained by a simple change of vector, 
is obtained in the SFG by a complete structure transformation. A measure like 
the maximum distance in ordering between two depending operations is easily 
extracted in the proposed model. For each of the two extreme points p of Pa the 
expression II(p- I(p)) /.1. is evaluated. The constant .1. is equal to the minimum 
ordering distance for a given II. In this example .1. = 2. The maximum 
of the two is the required measure. Extracting this measure from the SFG 
requires the evaluation of the relations between the new indexing signals. Since 
both structure and signals of the SFG have changed, previous evaluations and 
analysis are not reusable. Only by symbolic analysis or simulation, requiring 
enumeration of iterator values, this maximum can be found. 
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Figure 14: Loop folding as a change of ordering vector in the proposed model 

8 Extensions for non-affine index functions 
In section 1 the characteristics of the target domain of nsp algorithms is 
outlined. Clearly, a model based on CARE's covers a large part of these char
acteristics, but certain types of indexing functions are not supported. Among 
these the most important are: non-linear index functions and data dependent 
index functions. These functions can be created by conditional statements or 
direct by non linear computations. See [14] for examples. 

Note that little attention has been given to modeling index functions be
cause they are affine in the context of CARE's. However, non-linear and data 
dependent functions need an efficient model that blends in with the proposed 
data flow and control flow model. 
In the context of the proposed model, a convenient way to model indexing 
functions is to couple their m-dimensional output values to their n-dimensional 
operands into m+n dimensional vectors. For example, the function f(i) = i+2 

can be represented by the vectors ( i ~ 2 ). This is equivalent to plotting 

f( i) on an axis against i on another axis. But instead of looking at this plot in 
terms of a curve, it can be considered as a set of points in a value-iterator space. 
Such a set can be modeled by a polytope, because the range of the iterators 
is bounded. A less straightforward use of this technique is demonstrated in 
figures 15 and 16. Figure 15 shows the values of the function f(x) = x mod 4 
plotted against x. This piece wise linear function can be modeled by a sin-



www.manaraa.com

246 

f(x) 

4 

3 

2 

1 

O~~~-+~~~~~~~~~~~--~~~~~~--

o 1 234 8 12 16 x 

Figure 15: A modulo indexing function: f(x) = x mod 4. 

v 
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Figure 16: Modeling the function f(x) 
ordering function. 

x mod 4 by a polyhedral and an 

gle polyhedral and an ordering function as shown in figure 16. The function's 
values have been distributed over a 3 dimensional space set up by the axis i,j 
and the 'value-axis' v = f( i, j). The relation between x and i, j is given by the 
simple ordering function x = i + 4j and the bounds 0 $ i $ 3. The bounds 
form a part of the polytope definition. The ordering function and the polytope 
together model the indexing of a signal a[f(x)] as indicated by the arrows in 
the figure. 
Note that the order of indexing has been given by the way in which the index
ing function has been specified, namely by means of a modulo on an increasing 
x. This order may be changed, if the data dependencies allow this, in favor of 
a more efficient control flow. Other indexing orderings can be easily expressed 
by changing the corresponding ordering function. 
It is clear that by modeling non linear index functions by polytopes and ordering 
functions, the optimization of control flow has become even more independent 
from the way the initial algorithm has been specified. The technique presented 
here can be easily extended to multi-dimensional indexing signals. 

The polytope in figure 16 has a dimension lower than the space in which it 
is defined. This is because the function is manifest. It is known which single 
indexing value is produced for each element of i, j. In data dependent indexing, 
this value may be unknown during architecture synthesis. 
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Figure 17: A data dependent modulo indexing function. 
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Figure 18: Modeling a data dependent indexing function by a single polytope. 

Example 8 
p[-I] = 3,
(z : 0 .. 19) :: 
begin 

end; 

p[z] = p[z - 1] + 1 mod 4,
![z] = input[z] mod p[z]; 
... = g(a[![z]]),-

In example 8 signal a is indexed by a data dependent function ![z]. The index 
function is depicted in figure 17. Clearly, the indexing values lie within a range. 
If this is the case, then to each i, j pair one or more values are coupled. This 
means that the polytope's dimension will increase in the direction of the v axis. 
This is shown in figure 18 for example 8. The faces of the polytope indicate 
the bounds of the index value ranges. Note that by using this model, ranges 
can vary for different i,j pairs. More details of this powerful index function 
modeling method can be found in [14]. 

9 Application of the model to High Level Mem
ory Management 

The use of the model in regular array synthesis, except for the relatively known 
tasks oflocalization and scheduling/assignment, is discussed in [51, 53]. The use 
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of the model in HLMM for optimization and analysis of memory size, memory 
access characteristics and port count is briefly discussed in this section. More 
details can be found in [14]. 

9.1 The memory architecture model 
Most memory architectures in real-life applications in the target application 
domain, described in section 1, can be classified by a two level hierarchical 
memory system. The individual modules are categorized as follows: 

• foreground memories are used for the short term storage of intermediate 
signals or signals with a large number of accesses compared to their life
times. These memories are typically considered as a part of data-paths. 
They are characterized by fast accessibility, i.e. they don't have a separate 
read and write cycle. 

• background memories are used for long term signal storage, mainly due to 
use oflarge multi-dimensional signals. They are characterized by separate 
read and write cycles or multi-cycle accesses. Depending on the required 
access schemes different type of memories are possible. 

In general, each memory has a number of memory ports. The type of ports can 
be read, write or combined read and write. With each port addresses are associ
ated to access a specific signal instance from memory. Due to the large number 
of multi-dimensional data involved in the application domain, combined with 
the high throughput demand, the communication between memories and data
paths is of major importance to arrive at an efficient architecture. If high-level 
data-path mapping (HLDPM) [35] would be performed without taking into 
account a possible communication bottleneck, the timing constraints resulting 
from this mapping could give rise to the allocation of an excessive number of 
memory ports or large buffer spaces. In order to avoid this, we believe it is nec
essary to allocate first the minimal number of memory fields and memory ports 
to satisfy the algorithmic requirements. The latter are then used as constraints 
for the data-path allocation [15]. The best solution would be to handle both is
sues simultaneously, but we believe that this is impossible given the complexity 
of this task for realistic applications. Therefore, we have chosen to split up the 
tasks into HLMM and HLDPM. Practical experiments indicate that this leads 
to acceptable data paths, while the memory cost can be reduced significantly. 
Therefore, the HLMM task is the first task in the Cathedral synthesis scripts. 

The architectural model for the background memories consist of a number 
of distributed (dedicated) bulk memories of different types (pointer based or 
random addressed, single or multi port, static or dynamic) which communicate 
via (dedicated) ports and interconnections with the data-paths. Note that 
after HLMM the final number of interconnections is not solely related to the 
number of ports but also to the data-path composition, which is unknown at 
this stage. However, the necessary bandwidth is fixed by the HLMM task. The 
architectural model as defined for the HLMM task is depicted in figure 19. The 
architectural model for the address generation includes dedicated address logic, 
whenever it can be motivated, which in general can be possibly shared by a 
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Figure 19: The memory architectural model. 

number of memory ports. However, (large) part of the address generation will 
be performed based on arithmetic operations which can be multiplexed on the 
data-paths together with the rest of the signal flow operations. 

9.2 Control flow transformations for HLMM 
The proposed data flow modeling allows for the analysis of groups of signal 
instances instead of individual ones. However, multi-dimensional signals are 
not grouped beforehand in the initial data flow. In fact, the final grouping 
of individual signal instances will be a result of the optimization process to 
be performed on the data flow. A first complexity reducing step in HLMM 
is an initial pruning of the polyhedral dependency graph. All intermediate 
signals, which are sure to be consumed directly after their production, do not 
have to be stored in background memory. The corresponding polytopes and 
dependencies can be pruned from the initial graph. The pruned graph is used 
in the remaining optimization steps. 
The solution space for HLMM is a multi-dimensional common node space, 
along with linear ordering vectors. 
Creation of the common node space requires the placement of individual node 
spaces into a single common node space. Given the common node space, various 
linear orderings form the solution space. The total cost related to storage is 
dependent on all of the following 3 elements. 

Memory size: Memory size is related to the maximum number of signal 
instances to be stored at any point in time for a given ordering of computations. 
Both the placement of computations of signal instances in an algorithmic space 
as well as the choice of linear ordering function have an influence on the memory 
SIze. 
Due to the choice a certain ordering vector the number of intermediate signals 
which are alive at one time point might be strongly reduced. As a result it can 
be decided to use a type of foreground memory to store these signals. This 
has already been illustrated in section 6.4, for example by showing the effect 
of loop merging on the number of signal instances to be stored (example 4). 
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Optimization of the internal organization of individual memory modules is 
another task. Different groups of signals with their access scheme have to be 
allocated to memory locations in such a way that the total number of memory 
words is minimized. 

Distribution of memory accesses: The distribution of accesses over 
the available cycles is an optimization task in memory management. The dis
tribution of memory accesses is related to the distribution of dependencies in 
the algorithmic space after placement of computations. An uneven distribution 
of dependencies in combination with a linear ordering function will give rise to 
an uneven distribution of memory accesses and therefore inefficient utilization 
of allocated memory ports. For a given ordering vector, the relative ordering of 
accesses is fixed for sets of signals. However, the exact coupling of which signal 
is assigned to which memory port still has to be determined. This is called 
port assignment. In principle the number of ports should be high enough to 
satisfy the bandwidth constraint given as the maximal number of simultaneous 
access operations at a single time point. 

Complexity of address calculations: Address calculation complexity 
is influenced by the uniformity of the dependency distribution after placement 
of computations. Regularization of the data flow is a well known topic in ar
ray synthesis. Regarding multiplexed architectural styles, compared to array 
synthesis there is not a constraint on the mapping of space-time dependencies 
into a regular structure of physical interconnections, i.e. busses and registers. 
However, there is much similarity with optimizing the regularity of space-time 
dependencies, because this regularity does allow a highly repetitive access pat
tern of signal instances. 

The effectiveness of this type of regularization has already been reported 
in [60] where it is illustrated on a Levinson-Durbin algorithm. The reason for 
this optimization is that the regularity within these signal instance clusters 
is exploited, leading to a small number of different indexing patterns in the 
complete n-dimensional common index space. 
A small number of different indexing patterns is desirable for the following 
reasons . 

• Different indexing patterns will lead to increasing control flow complexity, 

• A large variety of index patterns reduces the compatibility of the data 
flow operations related to indexing. This compatibility is desired for mul
tiplexing these parts of the data flow on a minimal amount of hardware. 

From the above, it can already be concluded that the proposed model can be 
used to derive all aspects of storage related cost. Note that expressing a partial 
ordering by means of a linear ordering vector may in some cases put constraints 
on the solution space whenever directly applied to polytopes extracted from 
the initial data flow specification. Hence, the straightforward use of polytopes 
combined with the linear ordering already excludes some orderings. This is 
not always desirable and it may lower the efficiency of the derived memory 
organization. Therefore, these constrains should be detected and alleviated. 
This can be done by reformation of the polytopes [14]. 
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Figure 20: Simplification of the CRD algorithm with node space to node space 
signal dependencies. 

9.3 Example of optimizing control flow for HLMM 
In this section, the theory of control flow modeling and transformation will 
be applied in the design of a memory management scheme for a simplified 
Contour Regularity Detector (CRD) algorithm [27]. This algorithm is used in 
a robot vision application where robust contour tracing has to be performed 
on complex images corrupted by the presence of noisy [56]. 

EX8IIlple 9 
func main(tangent : word[4096])path : boolDD = 
begin 

(i : 0 .. 511) :: 
(j : i .. 511) :: 
begin 

(k : 0 .. 63) :: diff[i][j][k] = f1(tangentD, i, j, k); 
mean[i][j] =f2(diff[i)[j]0); 

end; 
(i : 0 .. 511) :: 
(j : i .. 511) :: 

grid_diff[i][j] = f3(diff[ll[jJD,mean[ll[j]); 
(i : 0 .. 511) :: 
(j : i .. 511) :: 

path[i][j] = f4(path[i - 1][j - 1], grid_diff[i][j]); 
end; 

The input of the algorithm is a multi-dimensional signal tangent with 4096 
signal instances. This large signal is stored in memory external to the system 
implementing the algorithm. The task of HLMM is to optimize the memory 
organization resulting from signal creation within the algorithm and therefore 
within the system implementing the algorithm. To understand the dependen
cies between signals expressed by this abstract algorithm, consider the follow
ing line of code extracted from it: grid_diff[i][j] = 13(diff[z1[j]0, mean[z1[j)). 
This line indicates that signal instances grid_dill[z1[j] depend for their cre
ation on signal instances mean[z1[j] and dill[i][jJO, using some function 130. 
The empty brackets in dill[z1[j]O denote all 64 signal instances of dill for a 
given i,j. This means that each signal instance grid_dill[z1[j] depends on a 
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for p=O to 511 
do 
for q=O to 511-p 
do 
for k=O to 63 
do 
diff[q] [p+q] [k] = f1(tangent[] .q.p+q.k); 

od 
mean[q] [p+q] = f2(diff[q] [p+q] [J); 
grid_diff[q] [p+q] = 

f3(difHq] [p+q] [J .mean[q] [p+q]) ; 
path[q] [p+q] = 

f4(path[q-l][p+q-l],grid_diff[q] [p+q]); 
od; 

od; 

Figure 21: Polytope placement with the control-flow-equivalent procedural 
code for ordering vector II = (-3423734304 1) in the i, j, x space. 

total of 65 other signal instances. 
A direct procedural interpretation of the code of example 9 leads to memory 
requirements of over 8 Mega signal instances, which equals for this applica
tion over 40 Mbit of memory. These memory requirements can be drastically 
reduced by optimizing the control flow of the algorithm. This optimization 
task can be expressed in terms of an optimal placement of the polytopes in
volved and an optimal selection of the linear ordering vector, using the proposed 
model. Extraction of the polytopes and their dependencies according to the 
presented model, leads to the inter-node-space dependencies as indicated by 
the arcs in the graph of figure 20. How to select a placement is discussed in 
[53, 54]. The result of the placement, which is in fact a series of affine polyhe
dral transformations, can be found in figure 21. In this figure, the polytopes, 
but not their placement, correspond to those extracted from the initial applica
tive code. Their dependencies are indicated for a single i, j-pair by arrows. The 
bold arrows indicate the dependencies on 64 signal instances diff[i]U]D. It is 
clear from the way the polytopes have been placed that minimizing dependency 
lengths is an important placement criterion. Notice the dependencies within 
the polytope of path which are the only ones which are not parallel to the 
X-axIS. 

The selection of an ordering vector is done by successively adding constraints 
to the ordering vector. Each constraint has the form of a linear equation, set 
up by a vector inner product IIv = c, in which v denotes a direction cor
responding to a preferred ordering of operations. The constant c is a result 
of the previously given constraints and the placement of the polytopes. The 
optimal ordering vector for the placement depicted in figure 21, in terms of 
minimizing memory size requirements, is determined by 3 linearly independent 
equations: II(O 0 1)T = 1, II(11 O)T = 64 + 3 and II(O 1 O)T = 512 * 67. The 
unique solution is II = (-34237 34304 1). A procedural code with a control 
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test signal n-dim. node poly- CPU 
vehicle inst. signal inst. space pol. topes time (s) 

CRD ±136M 55 69 227 20 
CRD-out ±68M 26 20 66 10 
APP - 2 11 44 18.6 
QRJ - 7 5 17 5.2 
Hough ±78 5 5 15 1.3 
ex. 9 ±9M 4 4 9 <1 
Lev-Dur ±0.26M 4 11 17 1 

Table 1: Performance of model extraction tool. 

flow equivalent to this placement and ordering vector is also given in figure 
21. Notice the differences in loop structure and indexing of signals compared 
to the applicative code of figure 20. It is difficult to fully describe the applied 
polyhedral transformations in terms of classic loop transformations. It is clear 
that some sort of loop merging has occurred, but the re-indexing of signals in 
this example is not covered by any of those loop transformations. In the graph 
of figure 20, each arc carries two numbers. The numbers in the graph indicate 
memory requirements in terms of the number of signal instances. Those above 
the dashed lines apply when the code of example 9 is interpreted procedurally. 
Those below the dashed lines correspond to the optimized control flow. Note 
the extraordinary reduction in total memory requirements from 8.5M to 67 
signal instances. 
In this example only a single task of HLMM, namely minimization of storage 
locations, has been discussed. Other, equally important, tasks have been men
tioned in section 9.2, namely initial pruning, optimal port selection, in-place 
storage reduction and address calculation optimization. 

10 A CAD tool 
The evaluation carried out in this section has two aspects. In this section it will 
be demonstrated that the extraction of the information present in the model 
does not pose a practical problem for typical algorithms in the application 
domain. Information extraction can theoretically be a problem, because the 
removal of redundant inequalities from a polytope and the computation of 
extreme points have exponential complexity in the number of dimensions and 
faces [53]. 

The techniques used in the core routines of this tool are mainly based on 
results from polyhedral theory, as described in e.g. [34], and on conventional 
graph theory. CPU complexity is linear in the number of dependencies, but 
exponential in the dimensionality of the node spaces. However, in most real
life signal processing algorithms this dimensionality is low enough to ensure 
fast model extraction. Table 1 presents some performance results of the model 
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extraction tool, implemented in C++, for a DECstation 3100. The first test 
vehicle is the complete version of the (CRD) algorithm [27}. This test vehi
cle has been chosen to demonstrate that even for the complete algorithm the 
model extraction requires little CPU time. However, techniques are available to 
prune the original SFG, leading to a substantial complexity reduction [13]. The 
second test vehicle corresponds to the output of this pruning task in HLMM 
when performed on the complete CRD algorithm. The Algebraic Path Problem 
stands for a collection of algebraic algorithms [3]. QRJ is an algorithm for QR 
decomposition by Givens orthogonalization ([17], algorithm 6.3-1, pp. 156). 
See [49] for details on the Hough transform. The core of the Levinson-Durbin 
algorithm [59] is the last test vehicle. 

The table shows that more polytopes lead to a longer execution time for 
model extraction, as would be expected. However, the structure of the algo
rithm also influences the total execution time during the construction of the 
affine polyhedral dependency graph at node space level. The complexity of the 
structure of the algorithm is related to the complexity of the graph being built. 
Algorithms with complex multi-dimensional dependencies between polytopes, 
like the APP-algorithm, require more model extraction time then those with 
more polytopes but lower complexity, like CRD-out. 

The important conclusion drawn from the table is that model extraction 
does not pose any complexity problems for practical examples within the pro
posed specifications and restrictions. 

11 Conclusions 
In this paper it has been shown that formalization of high level control flow 
transformations in architecture synthesis requires a suitable formal modeling 
of both data flow and control flow. The proposed model has the following 
properties: 

• The data flow model allows control flow selection that is independent 
from the syntactical structure of an algorithm description. 

• Control flow alternatives are expressed as a combination of operation 
placement in a common node space and the selection of a linear ordering 
function in this space. 

• It exhibits amenity to a more formal and general approach to control flow 
optimization than conventional syntactical structure transformations. 

The proposed model has strong links with the polyhedral models used in many 
array architecture synthesis methods [12, 41, 33]. The main features of the 
model are the mathematical descriptions of both individual dependencies be
tween operations and signals as well as the structure of these dependencies. 
These features allow for efficacious steering methods [53, 54] for control flow 
transformations, which can outperform transformation methods based on al
ternative models, such as the SFG or stream model, in the given target domain. 
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In this way, relatively well known control flow transformations, like loop trans
formations [31,57,59]' can be easily generalized. Furthermore, important char
acteristics of a specified control flow, like those of signallifes, can be extracted 
in a systematic way. This has been exemplified by applying the model in the 
context of high level memory management for time multiplexed architectures 
targeted towards real-time DSP applications. It has been indicated how three 
important memory costs (storage size, access distribution, addressing complex
ity) can be expressed, and therefore optimized, in terms of the proposed model. 
This also applies to other optimization criteria in architecture synthesis, e.g. 
control complexity, which can be modeled and partially optimized at a high 
level. Apart from high level memory management, the model has been applied 
to regular array architecture synthesis [50, 51, 53]. 

Without extending the basic model, the exact data flow dependencies for 
algorithms that cannot be written in the form of Conditional Affine Recurrence 
Equations (CARE's) can only be approximated. Although CARE's cover a 
large percentage of algorithms in the envisaged application domain, extensions 
to the model are needed, especially for high level memory management for time 
multiplexed architectures. These extensions have been briefly outlined in this 
paper. A more detailed description can be found in [14]. 

Performance figures of a CAD tool implementing the model extraction 
demonstrates the feasibility of this approach for the envisaged application do
mam. 

References 

[1] S.G. Abraham, D.E. Hudak. "Compile-time partitioning of iterative parallel 
loops to reduce cache coherency traffic", IEEE Transactions on Parallel and 
Distributed Systems, vol. 2, no. 3, pp. 318-328, 1991. 

[2] J. Annevelink, P. Dewilde. "Hifi: A functional design system for VLSI processing 
arrays", IEEE International Conference on Systolic Arrays, pp. 413-452, 1988. 

[3] A. Benaini, P. Quinton, Y. Robert, Y. Saouter, B. Tourancheau. "Synthesis of a 
new systolic architecture for the algebraic path problem", Science of Computer 
Programming, 15, pp.135-158, 1990. 

[4] P. Bertolazzi, C. Guerra, S. Salza. "A systematic approach to the design of 
modular systolic arrays", IEEE International Conference on Systolic Arrays, 
pp. 453-463, 1988. 

[5] S.H. Bokhari. "Assignment problems in parallel and distributed computing", 
Kluwer Academic Publishers, Norwell, Massachusetts, 1987. 

[6] J. Bu. "Systematic design of regular VLSI processor arrays", Ph.D. dissertation, 
Delft University of Technology, Dept. of E. E., May 1990. 

[7] P.R. Cappello. "Space time transformation of cellular algorithms", Systolic Sig
nal Processing Systems, E.E. Swartzlander editor, Dekker inc, New York, 1987, 
pp. 161-207. 

[8] A.E. Casavant et aI. "A synthesis environment for designing DSP systems", 
IEEE Design and Test, pp. 35-44, April 1989. 



www.manaraa.com

256 

[9] F. Catthoor, H. De Man. "Application-specific architectural methodologies for 
high-throughput digital signal and image processing", IEEE Transactions on 
Acoustics, Speech, and Signal Processing, vo1.37, no.2, pp.176-192, February 
1990. 

[10] F. Catthoor, M. van Swaaij, J. Rosseel, H. De Man. "Array design methodolo
gies for real-time signal processing in the Cathedral IV synthesis environment", 
Algorithms and Parallel VLSI Architectures II, P. Quinton et al. editors, Elsevier 
Science Publ., 1992., pp.211-221. 

[11] H. De Man, F. Catthoor, G. Goossens, J. Van Meerbergen, J. Rabaey, J. 
Huisken. "Architecture-driven synthesis techniques for mapping digital signal 
processing algorithms into silicon", special issue on compo -aided design of Proc. 
of the IEEE, vol. 78, no.2, pp.319-335, Feb. 1990. 

[12] V. van Dongen, P. Quinton. "Uniformization of linear recurrence equations: a 
step towards the automatic synthesis of systolic arrays", IEEE International 
Conference on Systolic Arrays, pp. 473-482, 1988. 

[13] F.H.M. Franssen. "Algorithmic and architectural study of a character outline 
rasterization application", European Community Basic Research Action 3280 
(NANA), report IMEC/y2mI2/2.1/4, 1991. 

[14] F.H.M. Franssen. "High level memory management in the Cathedral III synthe
sis environment", European Community Basic Research Action 3280 (NANA), 
report IMEC/y3m6/2.1/6, 1992. 

[15] W. Geurts, F. Catthoor, H. De Man. "Time constrained allocation and assign
ment techniques for high throughput signal processing", ACMjIEEE Design 
Automation Conference, 29th, June 1992. 

[16] E.F. Girczyc. "Loop winding - a data flow approach to functional pipelining", 
IEEE International Symposium on Circuits and Systems, pp. 382-385, 1987. 

[17] G.H. Golub, C.F. Van Loan. "Matrix computations", John Hopkins University 
Press, Baltimore MA, 1989. 

[18] G. Goossens, J. Vandewalle, H. De Man. "Loop optimization in register-transfer 
scheduling for DSP-systems", ACMjIEEE Design Automation Conference, 26th, 
pp. 826-831, 1989. 

[19] D. Grant, P.B. Denyer, I. Finlay. "Synthesis of Address Generators", IEEE 
International Conference on Computer-Aided Design, pp. 116-119, Nov. 1989. 

[20] D. Grant, P.B. Denyer. "Address Generation for Array Access, Based on Mod
ulus M Counters", European Design Automation Conference, , Feb. 1991. 

[21] P. Havlak, K. Kennedy. "An implementation of interprocedural bounded regular 
section analysis", IEEE Transactions on Parallel and Distributed Systems, vol. 
2, no. 3, pp. 350-360, 1991. 

[22] P. Hilfinger, J. Rabaey, D. Genin, C. Scheers, H. De Man. "DSP Specification 
using the SILAGE Language", IEEE International Conference on Acoustics, 
Speech, and Signal Processing, pp.l057-1060, 1990. 

[23] S.Y. Kung. "VLSI array processors", Prentice Hall, Englewood Cliffs, N.J., 1988. 

[24] D.Lanneer, F.Catthoor, G.Goossens, M.Pauwels, J.Van Meerbergen, H.De Man. 
"Open-ended System for High-Level Synthesis of Flexible Signal Processors", 
European Design Automation Conference, pp. 272-276, March 1990. 



www.manaraa.com

257 

[25) S.R. Lay. "Convex sets and their applications", John Wiley & Sons, New York, 
N.Y., 1982. 

[26) J-H. Lee, Y-C. Hsu, Y-L. Lin. "A new ILP formulation for the scheduling prob
lem in data-path synthesis", IEEE International Conference on Computer-Aided 
Design, pp.20-23, 1989. 

[27] C.Y. Lee, F. Catthoor, H. De Man, "Real-Time Regularity Detection for Robot 
Vision Using a Customized Architectural Approach", IEEE International Sym
posium on Circuits and Systems, New Orleans, May 1990. 

[28] P.S. Lewis, S.Y. Kung. "Dependence graph based design of systolic arrays for the 
Algebraic Path Problem", Proc. 12th Asilomar Conference on Signals, Systems 
and Comput., nov 1987., pp. 13-18. 

[29] G-J. Li, B.W. Wah. "The design of optimal systolic arrays", IEEE Transactions 
on Computers, pp. 66-77, 1985. 

[30) P.E.R. Lippens, J.L. van Meerbergen, A. van der Werf, W.F.J. Verhaegh, B.T. 
McSweeney. "Memory Synthesis for High Speed DSP Applications", Proc. CICC, 
San Diego, May 1991, pp 11.7.1-4. 

[31] P. Lippens, J. van Meerbergen, A. van der Werf, W. Verhaegh, B. McSweeney, J. 
Huisken, O. McArdle. "PHIDEO: a silicon compiler for high speed algorithms", 
European Design Automation Conference, pp.436-441, 1991. 

[32] T.H. Matheiss, D.S. Rubin. "A survey and comparison of methods for finding 
all vertices of convex polyhedral sets", Mathematics of Operations Research, vol. 
5, no. 2, pp. 167-185, 1980. 

[33) D.1. Moldovan. "Advis: a software package for the design of systolic arrays", 
IEEE International Conference on Computer Design, pp. 158-164, 1984. 

[34] G.L. Nemhauser, L.A. Wolsey. "Integer and Combinatorial Optimization", John 
Wiley & Sons, New York, N.Y., 1988. 

[35] S. Note, W. Geurts, F. Catthoor, H. De Man. "Cathedral III : architecture 
driven high-level synthesis for high throughput DSP applications", ACM/IEEE 
Design Automation Conference, 28th, June 1991. 

[36) D.A. Padua, M.J. Wolfe. "Advanced compiler optimizations for supercomput
ers" , Communications of the ACM , vol. 29, no. 12, pp. 1184-1201, 1986. 

[37] P.G. Paulin, J.P. Knight, E. Girczyc. "HAL: a multi-paradigm approach to auto
matic data path synthesis", ACM/IEEE Design Automation Conference, 23rd, 
pp.263-270, 1986. 

[38) J-K. Peir, R. Cytron. "Minimum distance: a method for partitioning recurrences 
for multiprocessors", IEEE Transactions on Computers, vol. 38, no. 8, pp. 1203-
1211, 1989. 

[39] C.D. Polychronopoulos. "Compiler optimizations for enhancing parallelism and 
their impact on architecture design", IEEE Transactions on Computers, vol. 37, 
no. 8, pp. 991-1004, 1988. 

[40] W. Pugh, D. Wonnacott. "Eliminating false data dependencies using the Omega 
test", to appear at SIGPLAN PLDI, 1992. 

[41] P. Quinton, V. van Dongen. "The mapping of linear recurrence equations on 
regular arrays", Journal of VLSI Signal Processing, vol. 1, pp. 95-113, 1989. 



www.manaraa.com

258 

[42) S.V. Rajopadhye, R.M. Fujimoto. "Systolic array design by static analysis of pro
gram dependencies", Parallel Architectures and Languages Europe, J. de Bakker, 
A.J. Nyman, and P.C. Treleaven editors, Springer-Verlag, 1987, pp. 295-310. 

[43) S.K. Rae, T. Kailath. "Architecture design for regular iterative algorithms", 
Systolic Signal Processing Systems, E.E. Swartzlander editor, Dekker inc, New 
York, 1987, pp. 209-297. 

[44) Y. Robert, D. Trystram. "Systolic solution of the Algebraic Path Problem", 
Systolic arrays, ed. by W. Moore et al., Adam Hilger, Bristol, 1987., pp. 171-180 

[45) J. Rosseel, F. Catthoor, H. De Man. "Extensions to linear mapping on regular 
arrays with complex processing elements", IEEE International Conference on 
Application Specific Array Processors, pp. 156-167, 1990. 

[46) A. Schrijver. "Theory of linear and integer programming", John Wiley &; Sons, 
New York, N.Y., 1986. 

[47) W. Shang, l.A.B. Fortes. "On the optimality of linear schedules", Journal of 
VLSI Signal Processing, no. 1, pp. 209-220, 1989. 

[48) l-P. Sheu, C-Y. Chang. "Synthesizing nested loop algorithms using nonlinear 
transformation method", IEEE Transactions on Parallel and Distributed Sys
tems, vol. 2, no. 3, pp. 304-317, 1991. 

[49) M.F.X.B. van Swaaij, F.V.M. Catthoor, H.l. De Man. "Deriving ASIC Archi
tectures for the Hough Transform", Parallel Computing, no. 16, pp. 113-121, 
1990. 

[50) M.F.X.B. van Swaaij, l. Rosseel, F.V.M. Catthoor, H.l. De Man. "Synthesis of 
ASIC Regular Arrays for real-time image processing systems", Journal of VLSI 
Signal Processing, Special issue on CAD, 3, pp. 183-192, 1991. 

[51) M.F.X.B. van Swaaij, F.V.M. Catthoor, H.l. De Man. "Signal analysis and signal 
transformations for ASIC regular array architecture synthesis", Algorithms and 
Parallel VLSI Architectures II, P. Quinton et al. editors, Elsevier Science Publ., 
1992., pp. 223-229. 

[52) M.F.X.B. van Swaaij, F.H.M. Franssen, F.V.M. Catthoor, H.l. De Man. "Mod
eling data How and control How for high level memory management", European 
Design Automation Conference, pp. 8-13,1992. 

[53) M.F.X.B. van Swaaij. "Data How geometry: exploiting regularity in system-level 
synthesis", internal IMEC report, 1992. 

[54) M.F.X.B. van Swaaij, F.H.M. Franssen, F.V.M. Catthoor, H.l. De Man. "Au
tomating high level control How transformations for DSP memory management" , 
To be published in the proceedings of IEEE Workshop on VLSI signal processing, 
1992. 

[55) N. Tawbi. "Para.llelisation automatique: estimation des durees d'execution et al
location statique de processeur", These de doctorat, Universite Paris VI, Institut 
Blaise Pascal, Laboratoire MASI, Septembre 1991. 

[56] L. Van Gool, l. Vagenmans, A. Oosterlinck. "Regularity detection as a strategy 
in object modelling and recognition", SPIE Applications of Artificial Intelli
gence, Vol. 1095, pp. 138-149, 1989. 

[57) l. Vanhoof, I. Bolsens, H. De Man. "Compiling multi-dimensional data streams 
into distributed DSP ASIC memory", IEEE International Conference on 
Computer-Aided Design, pp. 272-275, 1991. 



www.manaraa.com

259 

[58] 1. Verbauwhede, F. CatthoOI, J. Vandewalle, H. De Man. "Background Mem
'lry Synthesis for Algebraic Algorithms on Multi-Processor DSP Chips", IFIP 
international Conference on VLSI, pp. 209-218, 1989. 

[59] 1. Verbauwhede, F. Catthoor, J. Vandewalle, H. De Man. "In-place memory 
management of Algebraic Algorithms on Application Specific processors", Al
gorithms and Parallel VLSI Architectures, E. Deprettere et al. editors, Elsevier 
Science Publ., 1991., vol. B, pp. 353-362. 

[60] 1. Verbauwhede. "VLSI design methodologies for application specific crypto
graphic and algebraic systems", Ph.D thesis, K atholieke Universiteit Leuven, 
Faculteit Toegepaste Wetenschappen, July, 1991. 

[61] M.E. Wolf, M.S. Lam. "A loop transformation theory and an algorithm to max
imize parallelism", IEEE Transactions on Parallel and Distributed Systems, vol. 
2, no. 4, pp. 452-471, 1991. 

[62] Y. Wong, J-M. Delosme. "Optimal systolic implementations of N-dimensional 
recurrences", IEEE International Conference on Computer Design, pp. 618-621, 
1985. 

[63] Y. Yaacoby, P.R. Cappello. "Scheduling a system of affine recurrence equations 
onto a systolic array", IEEE International Conference on Systolic Arrays, pp. 
373-382, 1988. 

[64] X. Zhong, 1. Wong, S.V. Rajopadhye. "Bounds on the number of linear allocation 
functions", VLSI signal processing IV, H. Moscovitz et al. editors, IEEE press, 
1990., pp. 85-94. 



www.manaraa.com

8 
AUTOMATIC SYNTHESIS OF VISION AUTOMATA 

Bertrand ZA VIDOVIQUE, Christian FORTUNEL, 
Georges QUENOT, Abdelhakim SAFIR, 

Jocelyn SEROT, Fran~ois VERDIER 

A - INTRODUCTION 

We are very thankfull to Marc ECCHER, Etienne ALLARD, Thierry 
BOMMARD and Serge DACIC whose ideas were used in this work and who 
contributed greatly during the early phases of this research. We are also very 
thankfull to the other dozen of researchers that, over the years, built the 
HECATE emulator. 

A.I - PROBLEM OVERVIEW 

The Systeme de Perception (SP) research laboratory of the Etablissement 
Technique Central de l'Armement (ETCA) embarked, several years ago, on a 
vast project to develop an environment that would perfonn the automatic 
synthesis of vision automata. 

Designing highly integrated (VLSI) vision automata may be considered a 
major challenge for the future due to the increasing complexity of integrated 
systems and the necessity to integrate more and more functionalities in 
systems, while minimizing the design effort that is repetitive and time 
consuming (thus expensive). There are a certain number of generic problems, 
described below, that are associated with the automatic synthesis of such 
automata. 

Increased functional diversity 

The need to build systems that are robust and capable of autonomous 
operation requires that one multiplies the number of sensors installed on a 
robot (for example, two cameras for stereoscopic vision), one diversifies the 
nature of sensors (for example acoustic and optical sensors) and one 
specializes the functionalities of each sensor to the mission at hand. Such 
approach fits within the paradigm of Active Perception that relies on the 
definition of mechanisms to actively control perception parameters such as 
the field of view angle, the focusing distance or the viewing orientation, and 
addresses the generic problem of focusing attention in space and time. 

This demand for increased perfonnance requirements in tomorrow's robotic 
systems, and the specification of more and more stringent constraints for the 
realization of target systems that forces solutions to be machine dependent, 
lead to a diversification of image processing (and more generally perception) 
functions that goes beyond the traditional design cycle and the current 
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integration technologies, both ill-adapted to satisfy these new needs. Several 
factors are responsible for this inadequacy. 

Algorithmic rigidity 

The various topological structures of associating hardware resources (vector, 
grid, systolic, pyramid, hypercube, etc.) and the resources themselves (shared 
memory, pipelined programmable processors, interconnection network blocks 
[Saf87]) all lead, in their architectural association, to different, often mutually 
incompatible, algorithmic solutions. In fact, given an algorithm, it is very 
difficult to extract the topological regularity and the processing concurrency 
needed to fit a particular computing topology, without requiring a 
reformulation of the procedure [Anders65,Berns66,Kuck77]. This is 
particularly true if one considers that data structures used for low-level 
processing (close to the pictures) have nothing in common with generated 
attribute lists used by the decision making process that follows the 
recognition phase. In the end, one needs to rewrite the solution whenever one 
changes the granularity (processor size), the topology or any other parameter 
of the architecture. 

Lack of a description formalism 

At the algorithmic level (specification), the lack of a description formalism 
for Image Processing (I.P.) applications (proof of some underlying 
immaturity in the field) renders the conception and validation of algorithmic 
solutions extremely hard. This is accentuated by the ever increasing 
complexity of tasks that are demanded of vision processes (proliferation of 
sophisticated sensors, elaborate ways to process their data by taking into 
account noise and uncertainty, and new techniques that associate 
heterogeneous (sonar / visual) sensors). This lack of a description formalism 
results from the fact that Image Processing applications remain problem 
oriented and machine dependent. This leads to artificial partitions of designing 
tasks, a priori decompositions of algorithms and arbitrary allocations of 
hardware resources. These heuristic methods of decomposing and mapping 
algorithms onto an architecture produce resource allocations that are, at best, 
sub-optimal; the new complexity of algorithms make them totally inefficient. 
So, to overcome the difficulties araised by the future multiple designs of 
tailored functions, we need a single formalism to describe both algorithms and 
specific architectures. This is our so-called Emulation-Synthesis approach for 
generating automatically vision automata. 

Difficulty in validating complete automata 

At the system level (definition), a major part (approximately 50% [Curtis88]) 
of all application-specific integrated circuits (ASIC) that are designed and 
verified in isolation do not work properly when placed inside their host 
environment (we have not seen yet any objective indications that the situation 
is changing). This is mainly due to the difficulty in simulating, fully and 
accurately, the complete system. This difficulty arises from the fact that 
simulation models for the various parts of the system are non-existent or 
incompatible (for example, functional behaviors of complex sub-systems are 
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often incomplete). Also, some modules (black box type) only provide a 
functional specification, whereas some others (library components) permit 
simulation down to the signal level. 

Complexity of synthesis processes 

On an implementation level (fabricating), current approaches to the 
architectural synthesis problem tend to separate its various phases (such as 
data-path synthesis or floor plan layout) into independent processes with their 
own tools and techniques or limit the architectural solution to a predefined 
type. This prevents achievement of optimal mapping solutions by not 
considering the problem in its globality. It is clear that this independence 
between the tools cannot subsist if efficient mappings that satisfy multiple 
constraints are desired. 

Higher integration needs 

Current trends in the area of robot perception that go in the direction of smart 
sensors, will require the integration of complete vision automata into very 
small dimensions that go beyond the reach of current VLSI technologies. The 
inexistence of tools sophisticated enough to accommodate these constraints 
(volume, low power consumption, heat dissipation), will necessitate the 
design or redesign of specific algorithmic solutions. The economic impact of 
such extraneous work (already happening) creates a need for conceiving new 
tools that systematically and automatically map algorithmic solutions onto 
the hardware, given some architectural or technological constraints. 

Need for a global and homogenous solution 

So a global approach to the automatic design of VLSI architectures, that takes 
into account the complete algorithmic solution and the dependency between 
the various phases of the compilation process, becomes more and more 
necessary. Solutions are required that can automatically map algorithms 
(specified by their functional behavior on incoming data flows) onto target 
architectures (specified by their topological structures for transforming and 
communicating data floWS). 

A.2 - PREVIOUS ATTEMPTS 

Some attempts have been made to avoid the algorithmic rigidity of specialized 
hardware. Languages can provide software constructs or models that allow 
problem specific parallelism or pipelining. For example, languages such as 
OCCAM feature the ability to handle parallelism, especially when they 
support the micromachine of general processors (transputers); they could be 
solutions for a better emulation of algorithms, but their semantics are still 
too restricted. 

Conversely if we are trying to avoid regular predetermined structures, the 
state-of-the-art silicon compiler allows relative flexibility in the definition of 
structures. For example some work at Berkeley [Pope84J has focused on a 
simple standard processing element with specifiable hardware features such as 
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word size and memory capacity. Only the topological association of such 
elements and a small part of the sequencing is specific to the application. 

A solution restricted to the sequencing problem has been studied at the 
Georgia Institute of Technology that is based on the data-flow paradigm. 
Since 1986 this paradigm has also been under trial at Stanford and Berkeley. 

But despite all these attempts, the flexibility of silicon compilers for material 
structure is still very limited: the systematic transformation of applications is 
formulated through conventional programming languages [Back78] and the 
weakness of their expressive power has contributed to the restriction of design 
models to a certain class of target architectures. Typical examples are Syco 
[Jerr86] or MacPitts [South83] which have microprocessor target 
architectures. 

A.3 • PROPOSED SOLUTION 

Description of our solution 

To overcome the difficulty created by the future multiple designs of tailored 
vision functions, we have attempted a so-called "functional approach" which 
aims at describing both algorithms and special architectures through the same 
formalism. This study lead to two different realizations: 

• The building of an image processing emulator (HECATE - MIMD 
school of specialized image processing modules) to support most 
currently known algorithms on the fly. 

• The design of a specialized highly parallel architecture (DATA-FLOW 
FUNCTIONAL COMPlITER, DFFC), based on a highly connected 
network of a custom processor, handling the execution of Real Time 
bnage Processing Algorithms expressed as Directed Data-Flow Graphs 
(DAG). 

The methodology presented here, conceived to rapidly and efficiently design 
embedded vision systems that satisfy stringent constraints, relies on the 
decomposition of a given algorithm into a set of functional primitives, and 
the emulation of the image processing algorithm prior to its automatic 
integration into hardware parts. The major interest of this so-called functional 
approach is that it aims at describing both algorithms and special architectures 
through a unique formalism and permits the automatic transcription of Image 
Processing algorithms into specialized automatons. This principle is 
essential: one description can be used equivalently to specify algorithms or 
the machines executing them. This, in essence, has the effect of fusing the 
phases of high level image processing algorithm specification, design and 
hardware implementation. 

This approach can be viewed as a three-step process that is clustered along a 
so-called "mother-architecture" hardware emulator (either Hecate or the DATA
FLOW FUNCTIONAL COMPlITER): 

• The emulation phase that provides a functional representation of an 
image processing algorithm. It consists of designing the specific 
algorithm and controlling its emulation onto the hardware to validate 
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its functional behavior. This phase can be divided into two steps 
iteratively executed: 

• The functional description of an application algorithm. 
• The hardware emulation of the algorithm onto the 

emulator. The programmer modifies at this time the algorithm 
until it performs as needed. 

• The diagnostic phase that extracts and translates emulation 
resources needed while running the algorithm (a solution to the 
application problem) into a final vision automaton. This phase 
generates a data-flow representation at the register-transfer level (R1L). 

• The synthesis phase that integrates any physical constraints 
necessary to the satisfaction of the requirements specified by the 
particular application and provides a near optimal solution (if one 
exists) in terms of a list of interconnected constructible units 
(definition of VLSI chip set masks). This phase, that in effect reduces 
the automaton generated by the diagnostic phase into a hardware 
machine, can be subdivided into many interdependent steps. These 
steps solve the problems of data-path synthesis, control synthesis, 
floor-plan layout and multi-chip partitioning. 

The functional description uses the functional approach to specify 
algorithms in the form of graphs of primitive operators. The interest of this 
representation is that it is the unique representation employed by the system, 
whether we want to describe what the system does functionally (specification) 
or we want to build a solution (definition). 

The hardware emulation consists of executing the specified algorithm in 
real time (or close to real time if resources need to be time-shared) and, in an 
iterative manner, modify an algorithm until it performs as one desires. Let us 
note that the satisfaction of the user results from a series of adjustments 
where parameters are modified. and one sees their effects. in real time, on the 
images being analyzed. This approach truly permits non-specialists to use the 
full power of highly complex emulators. 

The diagnostic stage is a process that partly executes during the emulation 
by "spying" on resources (data flows, operators) to determine which ones are 
used and when. It consists in collecting traces of all hardware and software 
activities. during the emulation of a given algorithm. Such traces answer two 
purposes: optimizing on-line the algorithm implementation, and providing 
basic information in view of straight integration from this very 
implementation (exact copy of traces). For example. if a complex ALU is 
used to do an addition, it will record the fact that an addition was performed. 
Once the emulation is completed. it generates a directed graph that represents 
a photographic memory of the execution of the algorithm on the emulator. 
This graph is then transformed in a way that is better adapted to the global 
optimization integration steps that follow. 

The previous steps (functional description, hardware emulation and diagnostic) 
rely heavily on an intuitive programming environment that allows 
non-expert users to specify algorithms, parameterize functions and to control 
the emulation through modifications of the algorithm. In the case of the Data-
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Flow Functional Computer emulator, this environment has become an 
integral part of the machine and is omnipresent. 

The integration phase performs the scheduling and allocation of operations 
(specified by the graph) onto available operators. This phase is the most 
important, and from a computing resource point of view, the most time
consuming, as the quality of the solution (the way the constraints are 
satisfied) depends on its efficiency. The originality of the approach resides in 
the fact that the problem is partitioned (this is necessary to reduce the 
complexity of finding a solution in the design space that meets all 
constraints) in two independent sub-problems: scheduling and allocation. 
Scheduling determines which operations should be performed at each clock 
cycle. Allocation assigns operations to available hardware resources. This 
allows to take into account low level constraints of realization (such as 
placement area, routing length or complexity, performance, thermal 
dissipation or grounding path) during the entire process of searching for a 
global optimum. 

Strengths of our solution 

The strength and originality of our solution resides in the following aspects: 
• At the algorithmic level, the automatic design of specific image 

processing automata is done from emulation results in the form of data 
flow graphs that are defined in terms of a "general purpose" machine 
for Image Processing or so-called "mother-machine". 

• At the system implementation level, the tasks of operation scheduling 
and allocation involved in the synthesis process, provide a globally 
optimized solution of the data path and the controller by considering 
low level realization constraints of all sorts. 

Thus, by combining the conception of an algorithm with its emulation and 
avoiding complex simulations, development time bottlenecks and formal 
verification, the proposed method generates truly integrated solutions. 

This functional approach, a priori less dependent on a particular language, 
except that it is constrained by the application domain (Image Processing), 
uses the definition of macro-cells that present the user with many facets. It is, 
in some way, similar to traditional VLSI design techniques and attempts to 
reduce into one the different phases of high level image processing algorithm 
specification, design and hardware implementation. 

We partially avoid the predefinition of any regular architecture or any type of 
fixed data path by taking advantage of an interesting property of Image 
Processing applications: they can be structured according to image features 
that need to be extracted (edges, regions, points of interest, velocity fields, 
colours, etc.) or according to decision-making methods that are used 
(thresholding, statistics classifications, Bayesian techniques, structural 
methods, tree parsing with heuristics, etc.) [Serf85,GalI86], which are 
representative of favoured data movements. For instance looking for "regions" 
into an image leads to grouping of pixels; this class of operator induces 
hierarchically organized communications between neighbouring objects. 
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These variables (pixels, edges, regions, etc.) can be associated through 
operators that favour specific data structures and flows (list, tree, pyramid, 
etc.) and find efficient implementations in hardware. Above all we focus on 
the functional properties of data flow models and delay as much as possible 
taking into account the parameters of the physical layout that will instantiate 
the architecture. 

Weakness of our solution 

This approach has a major drawback: we need to build a (reconfigurable) 
machine that achieves sufficient computing power to allow for the emulation 
of complex algorithms, at least for the given class of applications that are of 
interest. Let us mention that if in our case, it is Image Processing, it could as 
well be networldng (for emulating different protocols) or infonnation retrieval 
(for emulating various update mechanisms). This point was addressed by the 
successful completion of two data flow emulators (Hecate and the Data-Flow 
Functional Computer). It turns out that low level Image Processing 
algorithms fit exactly on data-flow architectures because their intrinsic nature 
is functional. 

A.4 - CHAPTER ORGANIZATION 

The chapter will follow (section B) with an analysis of the requirements that 
need to be satisfied in order to allow for an efficient designing of algorithms. 
Then we present the concepts of a functional description of algorithms 
(section C) that provide our solution its power and efficiency. Then we follow 
with a description of the concepts of emulation and rapid prototyping (section 
D), where as a related discussion about the main goal of hardware realization 
and software implementations for this project, we will evaluate challenges 
facing emulation methodologies. The description of the two emulation 
systems we have built (Hecate in section E and the DATA-FLOW 
FUNCTIONAL COMPUTER in section F) will then be done, before 
presenting the programming environment suggested by an efficient emulation 
and diagnostic (section G). We will show how studies about the emulator 
control and about concepts in domains of emulation, simulation test and 
design, have led to demonstrate the effective power of Object Oriented 
Programming tools for VLSI design; in particular the fact they support 
variable grain complex distributed processors aiming at direct and fast VLSI 
circuit design. We will also state reasons for incorporating the Hardware 
Modelling concept as a basic component of a powerful design methodology. 
Finally the synthesis phase and the tools that are associated with it (section 
H) are detailed before concluding (section I) on the approach. 

B - REQUIREMENTS FOR EFFICIENT DESIGNING 

B.1 - DIFFICULTIES IN DESIGNING ARCHITECTURES 

Complexity of vision automatons 

The domain of machine vision (not limited to structured environments) has 
recently started to be investigated from a proliferating number of research 
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disciplines (physiology, physics, applied mathematics, etc.) but also from 
varied application fields (robotics, non destructive testing, quality control, 
etc.). This is motivated by the difficulty of interpreting images and 
conceiving algorithms that actually solve real problems. The inability of 
researchers to structure, categorize and organize the acquired knowledge has 
lead to the defmition of a large and heterogeneous collection of techniques that 
often work on disparate data structures and cannot be assembled in 
straightforward manners. This heterogeneity and lack of formalization 
generate, when it comes to building a system, the creation of ad-hoc, highly 
complex vision automatons. Such complexity, or lack of regUlarity, renders 
very difficult the task of designing corresponding needed architectures that 
meet the processing requirements. 

Need for specialized architectures 

The tremendous amount of data (0.75 MegaByte for a 512x512 RVB image) 
that need to be processed at high frequencies (most often 30 Hertz and more) 
renders any classical Von Neuman's architecture inadequate to meet real time 
system constraints of most applications. But the large quantity of data and the 
locality of many operations suggest the decomposition of an algorithmic 
solution into multiple partial solutions that can be executed in parallel on 
multiple processors. This has lead to the definition of two major architectural 
and programming models ([Flynn72): Single Instruction Multiple Data 
(SIMD) and Multiple Instruction Multiple Data (MIMD) execution schemes, 
both based on tightly interconnected arrays of processors. These architectures, 
whether they are complete systems or add-ons, are generally much more 
complex than conventional information processors (mostly derived from the 
Von Neuman's computing paradigm). It is beyond the scope of the subject to 
detail such architectures which most often lack descriptive generality; so we 
refer to [Duff81], [Offen85] and [Dan81] for tentative classifications. 

But trying to multiply the number of processors cannot be done without 
difficulty. One needs to solve technological complexities, control local and 
global communications schemes or determine process concurrencies. In fact, 
the control of parallel machines lies more in the domain of Operational 
Research, independently of any heuristics that may be used to take advantage 
of an application regularity (for example array, list, pyramid or graph 
organization [Berg87], [Min86], [Nagi78]). More generally, data movements 
tend to exhibit strong randomness, as in region growing techniques where 
movements are function of pixel values and cannot be predicted in advance. 
More problematic is the fact that corresponding data paths end up taking 
different shapes for each envisioned solution. 

So, designing vision architectures faces many obstacles: 
• There are theoretical and practical problems to controlling parallel 

architectures. 
• State of the art in vision algorithmic is hard to delimit. 
• Depending of the task at hand, abstract data types tend to vary and no 

consensus can be established to define a common language. 
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• Due to the diversity of schools, it is a major challenge to reduce vision 
to a set of primitive tool boxes that could be standardized and reused 
(linear, differential, morphological, minimization operations). 

Mapping algorithms onto hardware 

Recent developments in Very Large Scale Integration technologies offer many 
opportunities to build cost-effective and powerful tailored integrated circuits. 
Unfortunately, some large scale computational problems are created: 

• In which way should problems be specified ? 
• What kind of computational models should be used ? 
• Which kinds of integrated circuits should be designed ? 

On one hand, a technologically possible solution is the systematic building 
of special purpose computers. Right now, it is possible to design special 
purpose circuits for dedicated applications; thereby allowing for the creation of 
rather complex automaton on a single chip. For example, VLSI special
purpose chips can be obtained for regular applications such as convolution or 
matrix computations [Mong85]. Such an approach is worthwhile for dedicated 
applications, as it provides the most efficient solution that meets constraints 
of performance given a small silicon substrate. The problem is that no 
changes can be done to a given specific circuit during the lifetime of the 
application. On the other hand, traditional processors are available in a broad 
range of applications; But, as powerful they may be now (Alpha or C40 
processors), they remain rather inefficient for most real time applications in 
image processing. Between these two extremes, many kinds of very different 
architectures can be conceived. One aspect is certain: the tailoring / 
programmability trade-off seems to remain (the more tailored an architecture 
is made, the less programmable it becomes). 

Inadequacy of current design process 

VLSI design activities remain fully subordinate to the simulation bottleneck: 
a circuit is not safely built unless all aspects of its functioning have been 
simulated. If we take into account the increased complexity of vision 
automatons that need to be built, this implies large development cycles. 
Obviously, as the amount of configurations that need to be tested increases 
(unfortunately in an exponential fashion), the time it takes to validate a 
design proportionally grows, and cannot be expected to remain small. At 
some point, this time will grow too long, even with the availability of new 
unexpectingly powerful workstations; circuit validation will necessarily 
demand supercomputing power. So paradoxically, as technological 
developments provide more and more room for integrating very complex 
automatons on a single VLSI, and demand from industrial and military 
applications is finally proliferating (triggering the release of significant funds 
to support them), we may witness a tapering off, possibly a slow down, in 
the number of ASIC designs due to the limited capabilities of current tools to 
design, simulate and test effectively the new complex designs that are wanted; 
in a word, due to the difficulties in verifying the correctness of a solution. 
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It is clear that the validation of a solution today is hampered by the presence 
of the debugging step whose role is not only to verify that the circuit works 
electronically as it should, but also that the circuit performs the function it 
should. This multiplies and mixes the problems and considerably augments 
the time it takes to ensure that everything is correct (if there is a problem, is 
it due to a failure of some electronic component or is it due to logical 
misconception?). It certainly would be desirable to separate, as much as 
possible, both aspects. 

Within the application domain of interest, such as advanced signal or image 
processing, where the specificity of algorithmic solutions is necessary to 
satisfy system constraints, algorithms need to be modified quite frequently, 
during the design process obviously, but also during the entire lifetime of the 
system to provide new or enhanced functionality. This is particularly true of 
our application domain where algorithms are poorly characterized and may 
functionally fail at some latter date due to changing operative conditions. If 
we consider the highly competitive market of today that allows very small 
profit margins, it is critical to reduce the time spent designing a new product 
or modifying an already existing one, so as to do it as quickly as possible or 
make due with lower development budgets. 

It is clear that with current design processes, it becomes very difficult to 
concurrently design and test reliable tailored algorithmic solutions that solve a 
particular problem, and the integrated version of their corresponding target 
architectures. 

B.2 • EFFICIENT DESIGNING 

So, when confronted with building real vision architectures, we are faced with 
two major problems: 

• Defining an algorithmic solution to the problem. 
• Constructing a specialized architecture that efficiently implements the 

solution. 

This forces us to take two simultaneous looks at the problem: 
• An image processing point of view that aims at validating an 

algorithmic solution. 
• An integrate and test point of view to verify that the generated circuits 

function electronically as specified. 

Rapid prototyping 

By definition, the design process is iterative. The fact we are conceiving 
something that is new indicates that some type of search in the solution space 
will be necessary. But, as we have said, the life time of a product or its many 
instances (versions) will justify many design cycles. It then becomes critical 
to minimize each cycle time. What one needs to show at each iteration, is 
that there exists or does not exist a functional solution given the new 
specifications of the problem. Let us emphasize that the term "functional" 
carries two important meanings. The first meaning, which has lead to the 
definition of APPLICA TIVE languages, refers to the fact that the basic 
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concept is function application. So, algorithms must be specified in terms of 
function input and outputs. The second meaning, closely related to the lack 
of internal states in the functional model, concerns the fact that the solution 
must work according to the specifications, regardless of input/output 
frequencies. Timing problems are always a major source of delays, especially 
in under real-time constraints. What we need then, is an environment that 
permits, what we call, "rapid prototyping" and that allows a designer to 
quickly evaluate a solution for a set of specifications that is not always 
clearly defined and tend to evolve continuously. Such an environment 
addresses the first point of view in that it allows validation of an algorithmic 
solution from the functional point of view. Having reached that step, it would 
be desirable to take the functional description and transform it, as directly as 
possible, into a physical machine (specialized architecture). 

Silicon compilation 

The second point of view deals with the straight integration into silicon of 
specific algorithmic solutions. If we look at the state of the art, attempts are 
mainly concerned with integrating very basic operators (convolvers, edge 
detectors, median filters) commonly used by many classes of vision problems 
(tracking, motion detection, stereoscopic vision), but solving in no way a real 
problem. We are far from being able to systematically integrate complete 
procedures (whether they need to be real time or not). The reason is that the 
solution must rely on the design of a specific architecture for which one can 
rarely extract a regularity that can be exploited throughout all facets of the 
architecture (data paths, controllers, layout). Unfortunately, this complexity is 
expected to increase as applications demand more; it must be dealt with. 
Although the study of architectures is expected to bring new solutions, the 
architectural complexities of algorithms will not be solved by considering 
some aspects of the solution, or a few constraints that seem important; they 
must all be taken into account at once. This calls for a compilation process. 

On top of these architectural and integration problems, comes an even more 
complex problem which is the validation of the resulting architecture. Note 
that the validation process takes the circuit as input and determines (verifies) 
its functionality, whereas the design process does the opposite. The real 
problem here is to build a representation that can be shared by both the 
algorithmics and architectural (integration) domains. If such representation 
were available, it would permit switching from one domain to the other, and 
would greatly facilitate the compliance with both types of functional and 
electronic constraints. Finding a functionally and electronically correct 
solution would be rendered much more feasible. 

Efficient designing 

Lacking the definition of a global theory, one can summarize the previously 
expressed needs by stating that the validation of any particular image 
processing application must rely on extensive testing through 
many iterations of rapid prototyping (emulation phase), before 
one considers a hardware implementation dedicated to a 
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specific architecture by means of a compilation process 
capable of handling intrinsic complexities (synthesis phase). 

In this way, we propose to avoid complex simulations and development time 
bottlenecks, by instead generating integrated solutions, without the need for 
some highly specialized and non-conventional architecture design tools. 

C - FUNCTIONAL DESCRIPTION OF ALGORITHMS 

C.I - FUNCTIONAL DECOMPOSITION 

Decomposing algorithms into functions 

The actual tendency in Image Processing for designing algorithms let us 
perceive an unavoidable methodology organized around low level elementary 
functions which provide supports of elementary knowledge to higher level 
functions susceptible of solving problems having rich semantics. This 
approach encourages the separation of knowledge into multiple domains and 
ways to utilise them. In this context, one can look at a complex problem, 
such as an identification task, in terms of decomposing (analysing) it into 
elementary entities that can function independently or cooperatively. These 
entities have for mission the communication, to higher semantic levels, of 
elementary pieces of information on which, the identification of an object can 
be done, a detailed analysis of a component can be performed, or a system 
reconfiguration can be decided. This formalism is the one known as 
Functional Decomposition. 

The introduced formalism preaches the reduction of a complex activity (image 
processing interpretation task) under the form of a cooperation between 
multiple primitive operations, each one dedicated to extract part of the needed 
information. By primitive operations, we mean for instance: 

• Preprocessing and noise cleaning. 
• Segmentation into regions (groups of pixels having similar 

characteristics) or edges (dual property of regions). 
Syntactic analysis or pattern matching that compute, for example, a 
similarity coefficient between segmentation primitives. 

• Motion analysis that determines the most likely temporal variation of 
certain parameters inside an image or provides a region of interest 
where to point the camera. 

• Relaxation process which iteratively improves a segmentation task. 
• Decision process which changes the association between a group of 

rrimitive operations. 

The cooperative aspect between these various primitive processes is 
fundamental because it is the guarantee that a successful analysis will result 
given a complex scene to interpret. A robust process is one where a set of 
primitive operations actively cooperate by exchanging working or decision 
parameters. For example, a movement detection process may alternate with 
segmentation processes to provide a robust tracking of objects that stop and 
go. A major aspect of this decomposition methodology is that it expresses 
each extraction of information as a well characterized process that possesses a 
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well specified functionality. The goal is to pennit, at the operator level, an 
adaptation of the primitive operation to the environment (for instance: the 
contrast of the image or its dynamics), and at a higher level, an adaptation of 
association strategies between primitives depending on the type of analyzed 
images, both leading to usage rules. Following this decomposition approach, 
we can propose a classification of operators: 

• Linear signal processing techniques: they transfonn a signal into 
another one, more significant, through filtering, convolution or 
projection into another space (frequency, coocurrences, shape). 

• Statistical methods: they gather global characteristics associated with 
features of an image. 

• Syntactic methods: they extract primitives (such as arcs of circle, 
segments, angles) and detennine whether their relative arrangements 
can be recognized by specific grammars (in the widest sense of the 
word). These approaches make the foundation for recognition 
techniques. 

• Morphological techniques: they use set theory to define every image 
feature as the result of an association of set operations. 

• Dynamic programming, etc. 

Although this classification is somewhat arbitrary, it reveals several classes 
of operators that can easily be chained to build up complex solutions for 
almost any image processing problem. If it is clear that each operator is a 
candidate to integration into a specialized piece of hardware, the a priori total 
lack of knowledge about dependencies between operators, given that each 
algorithm will exhibit its own dependencies, is a significant obstacle to 
building a generic and perfonnant architecture. 

Mapping of functions into hardware 

The task of implementing an algorithmic solution onto a machine is refered 
to as the mapping of the algorithm onto the architecture. In effect, one tries 
to map functional resources (for instance: compute this convolution) specified 
by the algorithm onto available computing resources (for instance: this 
multiplier, this adder and this accumulator). In a generic way, the finding of a 
solution always consists of detennining the best trade-off between space and 
time (if there is not enough space to lay down all the algorithm, buffer and 
reuse some resources and iterate). 

If this task is rendered tremendously difficult, and needs to be done by an 
architecture specialist, it is because algorithm descriptions and 
computer descriptions belong, so far, to two spaces which 
remain completely distinct, without any formal way to map 
one onto the other one. This semantic gap makes algorithm 
implementation difficult, inefficient and unsafe. 

Moreover, the lack of an appropriate description may prevent identification of 
parallel processes. To reach the specified high level computational rates, one 
must exploit the potential parallelism which is intrinsic in any algorithm 
(this is particularly true in image processing where operators are applied 
independently on all extracted features). Special purpose architectures always 
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realize parallel associations of elementary computational units. Unfortunately, 
this can increase tremendously the software complexity. What good is a 
powerful computer if no-one but its designers can program it ? 

Let us note that, within our application field, conventional parallel 
programming languages are bound to be inefficient because they suppose 
either a highly regular target architecture (which is very suboptimal, given 
that a unique topology cannot remain efficient during all computations phases 
of an algorithm that starts with some signal processing and ends with 
symbolic analysis), or fail to specify the parallel nature of computations 
expressed in the form of data dependencies. Interestingly enough, a major 
work of the optimizing phase of a compiler is to detect data dependencies so 
blocks of code can be sequenced more efficiently. This is unfortunate because, 
at the time of conception, the designer typically knows where data 
dependencies exist. 

So, if one simply wishes to succeed in mapping efficiently an algorithm into 
an architecture, one needs to take advantage of the way people conceive 
algorithms (functional decomposition methodology) and provide a simple 
programming form that captures the intentions of the programmer. 

Let us describe here recent evolutions in conceiving integrated circuits that 
were a source of inspiration in selecting our approach. One way people create 
special purpose circuits is by assembling standard cells. The assembly process 
is controlled by a set of rules that ensure that the behavior of each component 
is not modified by associated cells. This is very similar to the functional 
decomposition approach previously described where one defines a set of 
primitive operators and one assembles them to create complex algorithms. 
One also uses data typing to verify that the associations are meaningful; for 
example: corresponding data types between output and input parameters. 
There are strong similarities between the two approaches that indicate that 
finding a common representation is not only possible, but would be 
beneficial to both domains in providing a unifying view: a set of primitive 
operators and their corresponding assembly rules. 

C.2 - DIRECTED DATA FLOW GRAPHS: A SPECIFICATION 
FORMALISM 

As we have seen, image processing algorithms can be described as specific 
combination of various basic functions. In other words, any algorithm can be 
described by a directed functional graph, where nodes represent selected 
primitive functions (operators) and links between nodes represent data 
dependencies (token flows). Note that we can describe equivalently hardware 
modules where nodes become computing resources and data flows become 
communication channels. 

So this directed graph becomes a privileged medium for specifying an 
algorithm but also for permitting an efficient mapping of its functional 
description onto an architecture. As we will see, the DATA-FLOW 
FUNCTIONAL COMPUTER emulator is a data flow architecture that 
permits efficient mapping of data flow graphs. It is this kind of equivalency 
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that we seek to exploit: matching the semantics of algorithms with the 
semantics of the computer behavior. 

A major advantage of the graph representation is its recursive nature: each 
operator specified in a graph can itself be another graph defined somewhere 
else. This permits a hierarchical representation of an algorithm which lets the 
programmer focus his attention to the level of details that is of interest to 
him. But more importantly as far as we are concerned, it allows the 
specification of operators to very fine levels of detail, thereby reaching the 
hardware level if necessary. This suggests to use a multi-facet approach where 
the programmer will manipulate independent multiple views of the same 
operator, depending of its motive. This will be detailed later in the 
programming interface section. 

C.3 - FUNCTIONAL PROGRAMMING 

The functional decomposition approach leads to a corresponding programming 
approach, based on the FP formalism originally defined by Backus [Back78J. 
This approach is motivated by the natural duality that can be exhibited 
between directed data-floW graphs and functional expressions. In fact, if a 
graph is a convenient way for an IP programmer to specify an algorithm, the 
corresponding FP expression is better adapted to computer manipulations. 
This approach then provides a great expressive power due to the 
manipulations that one will be able to perform either on the graph itself, or 
on the FP program [Will82]. 
Functional programs, as pure applicative formalisms completely eliminates 
the notion of variable. This is fundamental because it implies that they can 
execute on a target architecture without the need for a global controller to 
transfer data formlto a shared memory (this resulting in well-known 
bottleneck problems). 

In order to efficiently couple the functional programming concept with the 
data-floW model, we defined a dialect <O,F,P> of Backus' FP in which: 

• 0 is the set of basic objects. Objects are typed (e.g. PIXEL is the type 
corresponding to an 8-bit value) and structured (e.g. the following sequence: < 
P1, ... ,Pn> is a LINE of PIXELS). 

• P is the set of predefined functions. This will correspond to the set of 
primitives relevant to our application field and that have a known 
implementation on the target architecture . 

• F is the set of functional forms. Only two functional forms are needed to 
provide an equivalence with the data-flow graph constructors: 

• The composition form, defined by: fog: x = f : ( g : x ) 
• The construction form, defined by: [ f}, ... ,fn 1 : x = ( 

f1 :x, ... ,fn:x) 

Our dialect also allows a function to have more that one input object and to 
provide more than one output object. By doing so, the transformation 
between a functional expression and a data-flow-graph is straight forward, the 
composition functional form corresponding to serial placement of nodes, and 
the construction to parallel placement. 
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GoF [F,G] 

Figure 1. Equivalence between Functional Fonns and Dataflow Graph 
Constructors 

The functional programming approach presents several advantages over 
traditional languages: 

• A program in a functional language is an expression representing a 
function. Program evolutions are simply the result of applying 
functions to their arguments. 

• The syntax is very simple and can be used by non specialists. There 
are just a few functional forms such as the composition or the 
construction. The semantics of these expressions are clear. 

• There is no control mechanism; therefore no corresponding 
automatons. 

• The definition of a program is hierarchical by nature. Functions are 
built out of functions. In this way arbitrarily complex programs can be 
constructed. 

• The hierarchical decomposition describes perfectly resources that may 
be found at the material level. If a convolver is available, then there is 
no need to go to a lower level of description. If it is not available, then 
one needs to decompose that particular function until all primitive 
functions have been matched onto a hardware resource. 

• It expresses naturally data dependencies. This implies that such 
representation is well adapted at mapping expressions onto 
computational units: allocating them to proper resources, balancing 
the load between resources, and validating computations. 

• The functional decomposition of a program can be achieved in two 
ways: we can either use a top-down or a bottom-up approach. This 
means that depending on the ultimate goal, we may obtain several 
functional expressions of a given algorithm, each one providing a 
different view (behavior, implementation) of the algorithm. This is 
particularly useful for emulating a program. 

Many image processing operators can be expressed simply with this 
fonnalism. Examples include linear filtering, edge detection or the Hough 
transfonn. Following is a program for perfonning a basic edge detection and 
the corresponding data-flow graph: 
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VIDEO INPUT X:FRAME(PIXEL); 
ASYNC INPUT T:PIXEL; 
VIDEO OUTPUlY :FRAME(PIXEL); 

DEFdI =abs@sub @ (X, DI@X); 
DEF d2 = abs @ sub @ (X, D2 @ X); 
DEF d3 = abs @ sub @ (X, D3 @ X); 
DEF d4 = abs @ sub @ (X, D4 @ X); 

DEF maxI = scale @ max @ (dI, d2): 
DEF max2 = max @ (d3, d4); 
DEFtmp = max @ (maxI,max2); 

LET Y = thr @ (tmp, 'I); 

Figure 2. Example of a functional description and the data-flow graph 
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Expressing algorithms in this functional programming paradigm is both easy 
and efficient 

• Programs are easy to read because the syntax is straightforward and 
there is a low number of functional forms. 

• The hierarchical nature of the descriptions allow to examine part of an 
algorithm independently of lower or higher level definitions. 

C.4 • DATA FLOW COMPUTING PARADIGM 

Functional Programming language is a practical and efficient mean to express 
image processing algorithms. However, this language is very distant from the 
traditional Von Neumann model of computation; this suggests that some 
novel architecture needs to be designed in order to execute efficiently 
functional programs. 

Before we can consider the mapping of algorithms into special purpose 
hardware structures specified by a set of technical constraints, we need to get a 
description of the activities of an algorithm inside the space-time dimension. 
What we have up to now is only its static (space dimension) description. It 
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does not provide any information about the dynamics of executing a program: 
we need an execution model. 

We already stated the equivalency between the functional description of an 
algorithm and its associated directed data flow graphs. An execution model is 
conveniently provided by the data flow paradigm. If one considers that the 
problem of mapping algorithms to architectures is due to the semantic gap 
between programming languages and the architecture behaviors, one would 
expect that this equivalency would greatly simplify the mapping. 

There has been considerable interest for the Data How paradigm in recent 
years [Denn80][Arv86][Davis82][Vegd84], and data flow graph languages have 
been proposed [Ack79][Gajs82]. The basic mechanism is simple: to enable 
function executions, arguments must be present at all input links (edges) of 
the node. Then, the specified function is applied, and places its result object 
on the output edge. The availability of an argument on an edge is represented 
by the presence of a token. Execution can easily be simulated on a graphical 
interface, and one can see the program executing itself by observing the ways 
tokens are consumed and produced. 

The critical factor that permits an efficient mapping between an algorithm and 
an architecture is the fact that one can augment this graph with technological 
constraints such as computing time or data bit lengths; something not 
feasible with the functional description. This means that we are now able, 
because of the equivalency between the functional description and the data 
flow graph, to express algorithms at a high level of abstraction (when we are 
interested in their behavior) and at a technological level (when we need to 
consider built-in data dependencies and implementation constraints). The 
power of this approach resides in the capability to be able to move from one 
view to the other, thereby taking all aspects of the problem into account: one 
would expect the best possible implementation of the algorithm. 

To summarize, let us reiterate the fact that a program, in the Functional 
Programming paradigm, is an expression representing a function. Program 
evolutions are simply the result of applying functions to their arguments. So 
to represent program evolutions, we only need: 

• functions (primitives or user-defined), 
• dependences between functions (functional forms), and 
• data objects on which functions operate as arguments. 

Our Functional Programming formalism permits then an easier, safer and 
more readable writing of programs because of: 

• the lack of control specification (implicitly defined at the data structure 
level), 

• the ability to check for correctness of program semantics thanks to 
strong data typing, 

• the ability to use data flow graphs to efficiently describe needed 
operators, and to study space-time trade-offs needed for the construction 
of parallel machines, and, 

• the ability to hierarchically describe programs from the lowest to the 
highest levels of abstraction. 
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D • EMULATION 

D.1 • DEALING WITH CIRCUIT COMPLEXITY 

Behavioural simulation 

Behavioural simulation has been proposed as a solution to the problem of 
overall circuit complexity. It represents an attempt at unifying the 
representation of operated structures inside all CAD tools for VLSI, by 
making explicit the equivalency that exists between both privileged 
description modes: 

Structural: the hierarchical (relational) description of components with 
respect to each other. 

• Behavioural: the algorithmic (functional) description of a component. 
Such descriptions are used alternatively to simulate each element of a circuit. 
The precision in calculating signals, fronts or delays from the structural 
description of a circuit (up to gates or transistors) is always better than the 
precision derived from a few parameters in a behavioral description, because 
they include very rough commuting or throughput timings. For instance, 
implementing typical values from constructors into a VHDL model of a 
complex microprocessor makes a significant difference with the structural 
model; so much in fact that some behavior may not make sense any more. 
The narrow errors that are now tolerated in integrated circuit designing, renders 
this mixed simulation a "faked miracle solution" [Tier88, Siva82, Widd88]. 
This problem of loosing precision at the frontier between structural and 
behavioral descriptions seems to refer to a more general problem of 
identifying a formal equivalency between an architecture (declarative nature) 
and a sequential language (procedural nature). A typical example of this 
equivalency is found when one is trying to characterize a logical circuit at the 
floor planning step by establishing a relationship between the logical 
expression (behavior) of the circuit and its microelectronic geometrical 
structure [Rueh84, Paris89]. As one can see, the general problem is to embed 
correctly an a priori non dimensional problem, the algorithmics adequacy, 
into a dimensional description, the architecture. Languages such as VHDL are 
good attempts at solving this problem. But as one can see, the need to rapidly 
design complex VLSI, triggered by shorter product !ifes, generates some 
complexity design constraints that are poorly addressed by the concepts of 
hybrid (behavioral-structural) simulation. 

Hardware modelling 

Hardware modelling [Widd88] constitutes an attempt at validating in hardware 
subparts of circuits, and simulating the system in its whole. Such 
methodology advocates the direct use of some emulation hardware inside a 
complex simulation. There are two reasons to this: to dramatically cut down 
the simulation time, and to incrementally integrate critical submodules. In so 
doing, it is expected that the complexity that must be managed to make the 
circuit can be greatly reduced by avoiding modelling components, but instead 
by building the corresponding hardware module. This methodology would 
contribute also to better formalize the generation of complex testing patterns, 
in accordance with the expected behavior of the whole chip. This latter general 
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question, of testing a chip to detect hardware failures and validating its 
intended functioning, remains a critical and major step during the circuit 
design. So hardware modelling tries to get closer to the real device 
environment during the simulation phase, by substituting to a long and 
tedious defmition of test stimuli, a real component that delivers precisely the 
same stimuli as the one in the final product. This approach raises significant 
software and hardware implementation problems. The interface between 
emulated and simulation hardwares is carried out by the synchronized storage 
of input/output patterns. But this technique does not scale easily. First, one is 
easily limited by the total number of signals that the simulators will support; 
thereby limiting the emulation to only a few parts of the global architecture. 
Second, one must precisely emulate the circuit in a manner similar to its 
normal mode of operation: this includes proper timings and synchronized 
signals. Transferring test patterns between the simulation software and the 
emulated hardware will then require the real time control of rapid and complex 
architectures (the ones being simulated and the simulator itself). Third, as in 
most cases, the control device is not originally included among the CAD 
software, so it is uneasy to graft, and prevent any generalization of the 
method. Finally, incorporating the ability to emulate components within a 
VLSI system can only result in drastic architectural constraints about the 
features of each emulated elements, such as limiting the grain size or 
predetermining the connectivity of a network; in a word, anticipating some 
particular architecture that was not intended. 

So, if the "hardware modelling" concept appears to be a valid approach to 
dealing with the increasing complexity of circuits, its effectiveness may 
actually be limited in practice. If it settles adequately the problem of dedicated 
architectures in view of emulation, in the domain of I.P. these techniques 
would lead to software and hardware architectures which remain beyond today's 
technology possibility in terms of CAD environments. 

D.2 • EMULATION OPERATOR SELECTION 

It is then worth embedding the "hardware modelling" into a more general 
frame, the one of emulation, using dedicated hardware resources to execute an 
algorithm with conditions identical to the one encountered by the target 
system. 

The effectiveness of such emulation relies heavily on the choice of selected 
operators that support the emulation. They must, in particular, be sufficiently 
general so that, by setting a few internal parameters, a different behavior may 
be achieved. More importantly, the base of operators that must be built to 
emulate algorithms must remain small to allow for the construction of the 
emulator itself. In the case of IP, this is possible because we have identified a 
set of primitive operators that can be used to construct new algorithms. 

The choice of basic operators is done by a systematic characterization of 
image processing algorithms. It consists in, first decomposing known 
algorithms into their elementary computational structures, second detecting 
the commonality of such structures between various algorithms, and then 
generalizing such structures through their parameterization. It is then possible 
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to obtain very powerful sets of operators that are candidate for construction. 
Typical operators include filtering, convolution, statistics or segmentation 
operators. They are described further in the section about emulators. 

D.3 - EMULATORS 

The need for some emulation support hardware lead to two parallel 
experimentation projects (described next), the fIrst one serving as a learning 
tool for the second one: 

• First, the HECATE image processing emulator was designed (MIMD 
school of specialized modules) to support the implementation of most 
common IP primitives in real time (25 images per second) and to 
generate, from emulation results, the architectural synthesis of an IP 
algorithm into its integrated realisation (VLSI or integrated circuits). 

• Second, the DATA-FLOW FUNCTIONAL COMPlITER used a much 
more regular architecture based on one custom designed VLSI 
processor. Its construction, based on a three-dimensional homogeneous 
network of processors, makes the complexity much more manageable. 

E - HECATE EMULATOR 

E.1 - MOTIVATIONS 

We describe here the HECATE emulator (acronym for "Hote Emulateur pour 
la Conception d'Automates Embarquables" - Emulator Host for the Design of 
Target Automatons). When the project started, there were two major 
objectives: 

• To build some emulation (integrates the notion of real time execution) 
hardware, capable of running a large number of image processing 
algorithms. Given the formalism of Functional Decomposition, it 
became clear that the success of the solution depended on identifying a 
set of powerful, general operators that could be reused in as many 
algorithms as possible. These operators are presented below. 

• To use the emulator as a test-bench for various algorithms for which 
an integrated realization (VLSI circuit) is considered (embedded 
application). Provided one can capture and describe an execution trace, 
the emulator machine would furnish a precise timing analysis of the 
target vision algorithm, thereby allowing to skip the more classical 
and approximated simulation phase, and would permit its direct 
integration by exploiting resource information derived from emulation. 

Let us stress upon two major benefIts: 
• First, it provides a programming environment for the study of any 

image processing algorithm. Many powerful operators are available 
that can be used to emulate algorithms in real time, or near real time if 
there is not enough hardware resources. 

• Second, it enables the rapid prototyping of algorithms by providing an 
interactive interface where parameters of each operator can be modifIed 
at will while it is executing thanks to adequate display facilities. This 
allows the programmer to immediately view the effect of a parameter 
change and permits a quick and efficient specifIcation of any algorithm. 
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E.2 - GLOBAL ARCHITECTURE 

From a functional point of view, eacb vision process is a set of concurrent 
communications sub-processes dedicated either to low level feature extraction 
or to bigh level decision analysis. Features can be pixel attributes (luminance, 
hue, saturation), multispectral vectors (colour), textural attributes, edge points 
(spatial differences), regions (spatial continuity), spatio-temporal differences, 
or motion vectors. Eacb feature favours particular data structures (data 
representation), data flows (data communication) and operators (data 
transformation). Decision tecbniques range from statistical decision (principal 
component analysis, k-nearest neigbbours) to symbolic processing such as 
matching (elastic matching through dynamic programming) inference parsing, 
and symbolic reasoning such as prediction/verification paradigms or relaxation 
processes. All these primitive tools cooperate to perform robust recognition 
tasks by controlling each other and excbanging appropriate data structures. 

From a hardware point of view, Hecate is composed of a set of parameterized 
hardware operators powerful enougb to emulate a broad range of real-time I.P. 
algorithms [Wolf86, ZSF91, Eccb86] (see figure 3). It is a functionally 
reconfigurable assembly of operators. 

SUNWcmlltiOll 

OptioRbe .. 

Figure 3. Global architecture of the HECATE emulator. 

The control of the machine is different from traditional approaches: no 
sequential programming language or predefined model of synchronization is 
available. It is programmed through a grapbical environment (described in 
section G) which embodies concepts for intuitive programming [Coster85, 
Rosen76]. 

E.3 - OPERATORS 

The HECATE emulator is a set of bighly specialized and reconfigurable 
image processing modules, themselves comprising many operators belonging 
to the same functional processing class. 
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This machine obeys the so-called functional decomposition paradigm for 
pattern recognition that defines a series of transformation mechanisms 
(operators) starting with image acquisition and feature extraction processes, 
followed by higher and higher level cognitive computations. Through the 
systematic characterization of image processing algorithms that consists in 
decomposing known algorithms into their elementary computational 
structures, identifying structures that are common among multiple 
algorithms, and then generalizing these structures through their 
parameterization, a set of very powerful operators was defined and 
implemented [ZSF91, Ecch86]. 

.............. 

:ction.1 

!xc",x...,..."...,..... Region ., 
extracti~ 

Acquisition VI 
caracterist~ 
Doints J:, 

.............. . . 
,.'vuv" 1 

~~~""" detection 

Acquisition Primitives 
Extraction 

C 
H 
A 
N 
G 
E 

o 
F 

T 
Y 
P 
E 

'\ 

Relaxation 

~ 
~><~ 

Prediction 
Verif. 

~tructura 

methods 

Elastic 
Matching 

~ 

Pattern 
Recognition 

1-
~~ 1 A 

rDecision C 
T 

~ I 1 
o 
N 

""--

Decision 
& 

Action 

Figure 4. Functional synoptic of the HECATE emulator. 

Most of the operators are built with MSI chips including some nGPs and 
custom gate array and standard cell circuits. The wiring is mostly done in 
wrapping except for generic units such as address computation units; as there 
is only one instance of each operator, it does not economically make sense to 
realize printed circuit board versions of them once an operator has been 
debugged. All operators are realized with extended quadruple eurocard format. 
Video buses are interconnected between modules by wires to increase 
intermodulation immunity, or by optical fiber cables to minimize transfer 
delays. 

The set of modules is interconnected by very high speed buses that carry 
many data types (such as images, histograms or lists of regions) depending on 
the functionality of each module that produces or consumes the information. 
The interconnection network is hierarchical: an external bus for global 
control, and many internal buses within each module. 
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The control of the whole machine is operated by a host computer that 
provides the user with a programming interface hiding all details of 
implementation of an operator. 

CAPTIO 

CAPTIO is the acquisition and preprocessing module. It acquires digital or 
analog images (camera, photodiode array) from a scene and formats them 
appropriately for the requesting module. It performs the adaptation of signal 
levels between multiple sensors and the correction of sensor defects. After 
conversion, preprocessing operators includes linear combinations of images, 
thresholding, lookup conversion and temporal accumulation. This module 
contains the following resources: 

• Two independent digitizers: each one selects an input from four analog 
and one digital signals. Gain can be adjusted automatically and 
manUally. 

• 32 x 4 conversion lookups to implement any point operation on 4 x 
8-bit images simultaneously. 

• One four image input adder to perform transformations on colour 
images. 

• One recursive adder to perform temporal accumulation. 
• One image comparator. 
• 128 conversion lookups selectable by line number to correct for offset 

variations (typical of linear sensors). 
• One comparator between two images. 
• A colour visualization circuit 
• Two independent region of interest extractors. 

DICREM 

This module performs structural elastic matching on data sequences (any 
information coded as a list of attributes). The matching between two 
sequences (sentences) is based on a dynamic programming technique used in 
speech recognition that quantifies their global resemblance using only local 
similarities between attributes. The architecture of the module was defined to 
fit within the framework of functional decomposition. It offers several 
features specifically designed to take advantage of image data structures: 

• Images can be used as resemblance matrices. This module can then be 
used to extract and link contour points. 

• The graph obtained after execution that provides the optimal 
associations between reference and unknown word attributes can be 
parsed in both directions. 

• Attributes used in computing resemblance coefficients can be attribute 
vectors. 

The architecture is structured around a multitask environment where several 
processors cooperate to perform all calculations. One processor generates the 
resemblance matrix that calculates similarities between reference and unknown 
features of each sentence. Another processor generates all possible transitions 
from a node in the matrix. Then a series of elementary processors (1MS 320) 
compute, in a distributed fashion, the optimal path (best matching between 
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reference and unknown utterance) in the matrix. With a 32x16 matrix, one 
hundred references from a dictionary can be compared per second. 

CODING MODULE 

As we have just seen, the DICREM modules compares one dimensional 
entities. To adapt this technique to images, one needs to transform objects 
into one dimensional shapes. This module first codes a contours into a 
Freeman chain. Then it performs some polygonal approximation and encodes 
the chain into a representation that is translation and orientation independent. 
This module is tightly interconnected between CAPTIO where it gather 
images, and DICREM where it serves to construct a dictionary of reference 
shapes or encode an unknown shape. 

GENERALIZED CONVOLVER 

The GENERALIZED CONVOLVER (inner product of APL) generalizes the 
definition of the convolution expressed as a sum of multiplications by 
allowing the two involved operations (sum and multiplication) to become 
parameters. Typical extensions involve logical operations (or, and) and 
comparison operations (minimum, maximum). A convolution operation is 
computed at each pixel cycle. 

The traditional convolution, in the context of image processing, defines an 
application domain in the form of a neighbourhood. The size of the 
neighbourhood is nine elements and can then represent a 3x3 window. 
Another generalization of this module concerns the way the nine points are 
selected: they can be any points in a 16x9 neighbourhood around the center 
pixel. 

The true power of the module is given by two custom circuits called the 
"local shaper" that constructs 9 parallel data flows and the "generalized 
convolver" that computes a function of these 9 data flows. 

COLISE 

The COLISE module is devoted to the segmentation of images into regions 
and edges [Ecch92]. It includes many atomic operators whose assembly 
permits the implementation of many sophisticated functions: linear flltering, 
non-linear flltering, adaptative kernel convolution, or region labelling and 
fusion. The approach is similar to the one encountered in the design of RISC 
processors: to identify the minimal set of basic operators that lead to an 
efficient implementation. Because the objective here is to manipulate 
segmentation primitives, the trade-off is between the instruction set 
(definition of operators) and the communications (interconnections between 
operators) so that the largest class of applications is covered. 

The great functional power of Colise results from the definition of execution 
(operators) and association (communication) primitives. Three types of 
operators are defined: 

• Simple operators: 
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• Unary operators: thresholding, log(x). 
• Binary operators: add, subtract. multiply, logical-and, logical

or, minimum, maximum. 
• Ranking, dynamic thresholding 

• Parallel operators: they cover the same operations but either operate on 
neighbourboods or accept different images. 

• Global operators to gather global statistics on the dynamic range of an 
image or average size of a region. 

Using these basic operators, the module is capable of implementing very 
sophisticated operators. Among them, real time region labelling algorithms 
can be performed using a generalized version of the traditional connected 
component labelling technique. Instead of the classical inverted L mask to 
analyse an image, one uses a mask that can have a variable number of pixels, 
sparsely located around the center pixel (variable shape, size and topology). 
Then one explicitely defines fusion decisions that must be taken based on 
attribute and label values of each pixel in the fusion mask. The algorithm 
works on grey scale values and uses thresholded comparison operations to 
determine whether two pixels are the same or not. Such an approach is quite 
powerful because it permits fusion of textured regions (merge if there is a 
similar pixel in the neighborhood) or fusions in privileged directions (by 
defining a spatialy non symetric decision table). 

HEXACOURBE 

Curves are frequently used in image processing; in fact one rarely find an 
image processing application without an histogram or a projection. This 
module was designed to suport two main functionalities: 

• Generation of curves (histograms within a window, and horizontal and 
vertical projections), and 

• Analysis of curves (extraction of extremum values, and ordering of 
values). 

The module contains twelve specialized circuits dedicated to the generation of 
curves. Depending on the image size, 2 to 6 proprietary COURBE circuits are 
used (6 for a 512x512 image). Each circuit computes either an histogram or 
the horizontal and vertical projections. Each of these two operations require a 
different controller that is loaded into the XILINX gatearray associated with 
each COURBE circuit. The analysis of each curve is systematically performed 
for each image and is computed during the vertical retrace interval. Real time 
operation is supported by a 2-stage (image level) pipeline organization. 

NYX 

Because it is unlikely that the object of interest in a scene will not present 
itself in a referenced orientation, an efficient way of recognizing a shape is to 
rotate it in the image plane and then match it with a model by simple 
difference. Typically this leads to very robust techniques because the matching 
function is well characterized. The NYX module is capable of geometrically 
transforming an image in real time (CORDIC algorithm). Zooming, 
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translation, centering, rotation and windowing operations can be done in real 
time on an incoming data flow. 

MORPHEE 

Last, but not the least, the module MORPHEE provides all the memory 
necessary for emulation purposes. It is important to realize that all previous 
modules do not have any local memory and they execute all their operations 
on the fly. This approch fails in two cases: 

• when data formats between two sequential operators are incompatible 
(interlaced, non interlaced), and 

• when not enough operating resources are available to permit a real 
time implementation of an algorithm (which is the case with most 
algorithms). 

One must then use temporary storage either to convert data structures into 
appropriate formats, or emulate algorithms in near real time. 

This module provides large storage capabilities and arranges its memory into 
physical blocks (4 MByte banks) for local parallel accesses. But to other 
modules, it partitions its memory into logical blocks of arbitrary sizes. It is a 
shared resource between other HECATE modules. The versatility of this 
module comes from its 6 address generators that support multiple data type 
transformations. Such transformations are necessary due to the ever changing 
nature of data as it is passes from an image into a symbolic entity; for 
example, a list of points of interests become a polygonal shape when on tries 
to connect them. Each module can then process images in a format best 
adapted to its inner (input, output, operative) wired functions. 

The primary usage of this memory is to provide temporary storage, either to 
allow for the emulation of an algorithm, or to synchronize data flows between 
two operators. In any case, it has the effect of delaying data transfers, thereby 
reducing emulation speed. 

Architectural trials 

It should be noted that, besides providing specific image processing 
functionalities, each module was designed to test and validate a different 
architectural approach better adapted to the problem at hand. For instance, 
CAPTIO uses specialized hardware modules communicating through a highly 
interconnected network made of multiplexors circuits (MUX). DICREM uses 
multiple TMS 320 processors connected to a ring network. HEXACOURBE 
is built with many Xilinx circuits. And COLISE is a high level (at the level 
of segmentation operators) mixed VLIW and data-flow machine to which is 
atached a corresponding assembly language. All these architectural trials were 
a major source of inspiration when conceiving the processor for the DATA
FLOW FUNCTIONAL COMPUTER, and explain entirely its functional 
efficiency. 

E.4 - CONTROL OF HECATE 
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The controller of HECATE is a multiprocessor system, where each processor 
is dedicated to a specific functional task. Each module gets a dedicated real 
time controller. The user interacts with the machine through a graphical 
interface (detailled later) residing on a workstation. This central unit dialogs 
with two UNIX (for transparence reasons) processors over an ethernet network 
and the TCP/IP protocol. Each UNIX processor transmits to each module 
controller the list of tasks that must be executed over the VME bus. 

Each module necessitates a separate processor to ensure proper configuration 
and real time control. The high level (synchronization with other controllers 
and the HECATE interface, conversion of task requests into a series of data 
transferts to the module) controller is done by a server accessible to all. It 
uses a real time CHORUS kernel running on a Motorola microprocessor. The 
low level (data transfers with the module) controller provides all input/output 
interfaces with the module, and uses a SIM90 frame (multi 68000 processor 
system built by TRT supporting a VME bus and a specialized high bandwidth 
input/output bus). 

One of the main features of the controller is that it allows the programmer to 
change parameters of any operator while an algorithm is executing. So the 
programmer sees effects of his modifications right on the screen. This 
provides an efficient way to conceive and adjust an algorithm in the same way 
one adjusts the contrast button on a television set without having a precise 
knowledge of what contrast is. 

E.S - USE 

The construction of the HECATE emulator occurred over an 8 year period and 
ended in June 1991. Not all previously described modules were entirely 
fmished except COLISE; in some cases some operators were not implemented 
as originally intended, or were not tested. The project was stopped, primarily 
for support reasons due to a lack of permanent staff that could maintain 
appropriate knowledge on the various modules. Some of the frrst modules, 
such as DICREM, were working sporadically towards the end. So when the 
DATA-FLOW RJNCTIONAL COMPUTER became available, development 
stopped. The HECATE project nevertheless provided most of the concepts 
found in the second generation DATA-FLOW RJNCTIONAL COMPUTER 
emulator, whose realisation has gained in regularity, homogeneity, and 
integrability. 

F - FUNCTIONAL COMPUTER EMULATOR 

F.l - MOTIVATIONS 

In signal and low level image processing systems, the data-flow paradigm 
may provide the framework for solving many problems. Because data flow 
expressions of algorithms permit an exact representation of parallelism, an 
effective simulation and synthesis can be made. Thanks to its natural 
expressivity, especially for fme granularity (atomic data flows), the designers 
usually thinks spontaneously of such systems in terms of functional blocks 
[Allart88]. Moreover, the functional model offers a significant advantage for 
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signal processing: the natural expression of concurrency in the description 
simply because data-flows dictate that a computation be performed when data 
is available. Therefore, as long as the integrity of data-flows is preserved (data 
dependencies are kept identical), all implementations of data-flow descriptions 
will produce the same functional results. Thus the synthesized system is 
always functionaly equivalent to the one described as input. This fact, which 
garantees correctness of the solution, primarily lead us to implement a data
flow architecture in our second version of an emulator. 

The functional decomposition principles of programming and the Data How 
computing model presented previously became the basis for designing this 
new architecture. As we have already indicated, the difficulty of mapping 
algorithms onto a machine results from the differences between programming 
and execution models. To reduce, hopefully eliminate, such semantic gap, our 
approach has been to build an architecture that is a tridimensional graph, for 
which the mapping of a graph of operations into a graph of operators 
becomes a straightforward task. 

The DATA-FLOW FUNCTIONAL COMPUTER [Quenot92] profited from 
previous experiences about integrating image processing basic routines. The 
resources that were integrated onto the custom processor that composes the 
machine were selected based on the knowledge acquired during the realization 
of HECATE. In particular, by carefully selecting and agencing computing 
resources on the chip, many operators that used to employ several printed 
circuit boards are now simply realized with a few processors (for example: 
histograms and projections). Also a major difference in designing the machine 
was to build a regular structure made of identical processors; if this facilitates 
the construction of a compact machine, above all it facilitates the mapping 
problem because one only needs to choose a processor in terms of its location 
in the network (not its type). One nevertheless need to select the operation it 
will perform. 

Let us note that the functionality information about a processor will easily 
permit to derive a target automaton by eliminating processors that only route 
data. 

F.2 - ARCHITECTURE 

The core of our Data How Functional Computer (DFFC) is a network 
integrating two different kinds of processors, respectively dedicated to low
level and high-level image processing functions (figure 5). 

The network is interfaced with a SUN Spare host workstation through a 
specific controller, which performs the load and test functionalities along with 
low bandwith input/output facilities. 

The low level network is composed of a mesh-connected special purpose 
integrated circuit called the Data Flow Functional Processor (DFFP) 
[Quenot91]. Each DFFP has been designed to be mesh-connected in a 3D 
network through 6 input-output ports (practical networks can house from 64 
to 1024 DFFPs in a 8x8xN topology. Each port is made up of 10 
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bidirectional lines (9 for data transfer and 1 for acknowledgement). A full 
programmable cross-bar interconnection network allows the processing unit 
to fetch data from any port. Tokens can be output on each port at a frequency 
of 25 MHz. 
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Figure 5. Architecture of the Data Flow Functional Computer. 

F.3 - LOW LEVEL PROCESSORS 

L 

Figure 6. Block diagram of the Data-Flow Functional Processor. 

Each circuit contains a 256x9-bit words data RAM. It can be used as a dual 
port RAM operator, as a 256 word FIFO for buffering, or as a local memory 
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for specific operators such as histogramming. The core of the pipelined 
processing block includes an SxS multiplier and a 16-bit ALU. 

The control part has been designed on the basis of a programmable state
machine using a 64x32-bit word program RAM. Following the Data Flow 
computing model, the execution of each operation is fully data-driven. It is 
controlled by a dynamic ftring rule that evaluates token avaibility on each 
input port and room avaibility on each output port. If execution is validated, 
the operation specified by the state machine is performed. Many data flow 
operators can be implemented using this aproach such as arithmetic 
operations (add. multiply), logical combinaison (and, or), reordering (line and 
pixel shifts), and global statistics (summation, histogramming). Two 
processors have been integrated into a single chip. 

F.4 - HIGH LEVEL PROCESSORS 

The execution of high-level functions is handled by networks of TSOO 
Transputers. This general purpose processor which offers 4 serial 
communication links is very well suited to implement complex functions in 
our data flow architecture, as long as algorithms respect the data flow 
paradigm; that is, any output flow may only depend on input flows, and the 
rate at which tokens can be accepted satisfy real time constraints. Provided 
that a program in a Transputer node consumes and produces tokens from its 
serial links in a way similar to the DFFPs, the first constraint is easily met 
by implementing the operator as a single transputer process. To solve the 
second one we introduced a buffering mechanism using two upstream and 
downstream synchronizing operators. This mechanism can be used to couple 
any low (fast) and bigh (slow) level operators [Serot9l]. 

F.S - PROGRAMMING 

As our goal is to couple each primitive of the language with a data-flow 
operator, a library has to be designed for each type of processor. These 
libraries, implementing the most commonly used primitives in the field of 
image processing, will mainly save end users from writing their own low
level basic operators using the DFP assembler (exactly as normal users do not 
have to write machine language code on classical computers). For high level 
operators, users will have the choice of either resorting to the library or to 
writing their own specific operators using a C source template. A common 
specific module, merged at link-time, makes the defmition of such an operator 
independent of the actual network configuration and of any parallel routing 
process 
on the transputer node. Programmers view of the libraries is limited to a 
global operator database gathering public descriptions of primitives. Each 
entry in this database consists of a prototype, typing operator input and 
output sets, a list of external parameters and their default value along with a 
brief description of the operator functionality.The libraries may be easily 
extended to suit user's specific needs at any stage of application development. 
This approach has the advantage of introducing a software hierarchy that 
maximises code reusability and therefore greatly reduces the programming 
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complexity. It also provides an bomogeneous software interface for different 
arcbitectures. The following figure illustrates the programming environment. 

Figure 7. Data-flow Functional Computer Programming Environment 

An algorithm to be implemented is first expressed as a combination of 
primitives using functional forms in a FP-like syntax. Tbe resulting 
functional expression is then converted into an equivalent operator data-flow 
graph by means of a FP compiler. A translator bandies the conversion of this 
operator data-flow graph into a loadable processor graph, that is the 
conversion of public instances of tbe primitives into their actual 
implementation on the processor(s). This may involve, for example, 
translation from external parameters to processor registers and/or macro
operators expansion. The resulting data-flow graph, where each node 
corresponds to an operator implementable on a physical processor has then to 
be mapped onto the network. This can be done by means of an automatic 
place and route algorithm or manually thanks to an interactive graphic tool 
(Figure 7). In general, a manual placement is more efficient but an 
automatic, even sub-optimal, placement allows fast code prototyping. This 
mapping stage has to take advantage of the fact that eacb processor can be 
used simultaneously as an operating and routing element. Tbe network 
configuration file generated by the mapper is finally loaded from the host 
into the computer through the network controler. Since then it may be 
executed in real-time using video input and output flows or in "remote 
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mode" using controller low-bandwith input/output facilities. All of the 
programming tools are integrated within an interactive, user-friendly graphic 
interface running under the X window system, making the programmation of 
the DFFC easy and efficient. 

DFFP to Graph Tutorial Compiler - Vers 1.2 
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Figure 8. Example of a functional algorithm 

Figure 8 illustrates the implementation of an algorithm for the extracting 
majoritary sets of parallel lines, based upon the computation of the histogram 
of gradient direction and a partial Radon transfonn. The source code shows an 
input/output specification part, a functional description of the algorithm 
itself, and a instanciation part. The specification part allocates physical 
input/ouput devices. VIDEO devices correspond to digital video sub
systems while ASYNC devices represents controler low-bandwidth ports. 
The functional description consists of one or more independent functional 
blocks (BEGIN .. END). Each block combines primitive functions (upper
case) and user-defined functions or blocks (lower-case) to build outputs from 
inputs. The DEF definition statement enables a function result to be used 
more than once within the same block. It can also be used to split a complex 
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function into subsequent expressions. The 1 (2, .. ) pseudo-operators are 
function output selectors. From a classical programming language point of 
view, each block is a function declaring inputs, outputs and making use of 
local variables. From a data-flow graph point of view, a block is a stand-alone 
subgraph, which can be freely replicated. Moreover, it can be shared among 
source files, precompiled and inserted at link-time, or even included within the 
libraries (provided that the programmer writes its data-base external 
specification). Finally, the instanciation part (LET) associates block(s) 
functional inputs/outputs with the previously declared physical devices. This 
application can be easily extented in order to take into account more 
directions. As described it uses nearly 200 DFPs and 2 transputers, and has 
been executed in real-time on 25 Hz sequences of 800x572 images. 

G - PROGRAMMING ENVIRONMENT & DIAGNOSTIC 

G.t - INTUITIVE INTERFACE 

We have at our disposal two emulators configured as sets of electronic 
operators, embedded into flexible reconfiguration networks. The complexity 
of these emulators (especially HECATE) is such that it becomes unrealistic 
for any human operator to understand precisely how they work. On top of 
this, many resource allocation problems are so complex, that the 
determination of a solution can only be considered with computer tools. It is 
essential to provide an interface to the user that handles the complexity of the 
machine and that gives him a view belonging to his application domain 
(image processing in our case). 

The environment that was developed attempts to provide an answer, at least 
partially, to the open problem of human interface. For example: 

• How designers are to input design specifications and constraints? 
• How is the system to output results? 
• What decisions need to be made by the designers? 

It is a user-friendly system that displays, during execution, operational 
resources and their organization. This is done hierarchically, with at the high 
level the application, and at the bottom level its structural decomposition into 
hardware cells implemented by the emulator. 

The interface is meant to be used by a programmer that can generate a 
functional description of the algorithm needed to solve a problem. At this 
level, he can concentrate entirely on the solution to his problem, irrespective 
of other aspects of the solution. A person not expert in image processing is 
able to handle the machine resources needed by the application (recognition 
target tracking, etc.). But on the other side, a hardware designer ;~ ~-;Jle to 
concentrate on the architecture problem by looking at the architecture facet of 
the solution. Such programming environment fills the gap between the 
behavioral description of an algorithm (the functionality that must be 
implemented) and its structural description (the architecture that will 
implement it). 
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Figure 9. Programming interface for the HECATE emulator. 

G.2 • MULTIFACET PROGRAMMING ENVIRONMENT 

The environment we have built offers the programmer four separate and 
independent facets that result from the many ways in which an application 
may be viewed: 

Definition of a functionaly correct solution (programming): the system 
provides both a friendly access to the machine (graphical programming 
environment) and some guidelines on how to use the available 
operators of the application domain (hypertext paradigm interface). The 
programming environment offers tools to manipulate high level 
entities such as image processing programs and implement a given 
algorithm without having to worry about the configuration of the 
emulator. 

• Control of the emulation of an algorithm (emulation): the 
environment supports a real time and distributed operating system to 
manage and control all resources of the emulator. The specification of 
an algorithm must be transformed into a form executable by the 
emulator. Debugging of an algorithm supposes that one can set new 
values of parameters while emulation is taking place, and that the 
effect of such changes can be seen instantaneously on output screens. 
Analysis of the execution of an algorithm (diagnostic): once a program 
has been written, and in view of the ultimate goal of building a target 
architecture to execute it, it becomes necessary to monitor resource 
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usage as a program is emulated. The idea is to evaluate integration 
possibilities (outlook) from the very first steps of algorithmic 
debugging. This is accomplished by spying on which resource has 
been used and when. It generates a trace of the execution in terms of 
hardware operators, described at various levels of details. The goal of 
this diagnostic process is to prefigure (preview), independently of any 
actual control of the target machine, its organization structure in terms 
of hardware components and their temporal sequencing. This allows 
the programmer to modify his algorithm and come up with a solution 
that has all the chances of meeting realization constraints. 

• Design of a target architecture (synthesis): once a solution is 
functionaly correct and the rough evaluation of its hardware resources 
is satisfactory, the environment provides integration tools to propose 
an integrated version of the solution that satisfies realization 
constraints of heat dissipation, power consumption or volume. 

G.3 - MODELLING 

The control of the emulator is divided into two levels: 
A low level control that sets all internal parameters of each operator. It 
is distributed over all processors and handles communications between 
microcontrollers installed on each module. It can be viewed as an 
extension of hardware services and provides a functional view of each 
hardware operator. 
A high level control that provides a uniform and coherent view of each 
microcontroller independantly of its location on the network. It is 
based on a message passing architecture and leads to consider each 
operator as an object, following the "object oriented programming" 
paradigm. 

In the'high level environment, we are modelling hardware operators and image 
processing primitives that can be run on the emulator with "objects" that 
associate data structures and the methods to manipulate them. These objects 
correspond both to operators in the image processing sense as well as material 
resources. Such objects can either represent complex image processing 
operators, subroutines or entire algorithms. Such modeling attempts to reflect 
the functional decomposition encountered in image processing. 

G.4 - DATA ORGANIZATION: HIERARCHY & GRAPHS 

Operators, at any level (both structural and functional), are represented as 
objects. Each operator communicates with another one by sending and 
receiving messages. A hierarchy of operators is established where one 
progressively translates an image processing operator into an elaborate set of 
interconnected hardwired operators. The natural recursivity of this 
representation permits a homogeneous vision of a program down to its lowest 
level operators, following the paradigm of functional decomposition already 
presented. 

A graph is a data structure that stores (relational) associations of entities 
through links; it is more complex than lists or trees. The purpose of this 
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organisation is to allow the user to browse inside a database by means of 
relations existing between the various objects in the system. Such structures 
are quasi universal in data processing. For VLSI design, graphs are the main 
support in structural building from circuit to board cells; The basic I.P. 
process description is the graph of operators. This choice of representation for 
both image processing algorithms and their hardware implementations comes 
from the I.P. decomposition principle which brings out functional primitive 
data movements and operators, that are split recursively into more basic 
entities (convolvers, multiple adders ... ). In both projects, the operator graph 
is a key object upon which all control is applied. 

G.S - OPERATORS & MACROS 

Hardware operator objects are virtualized as Le LISP objects. Le LISP is a 
symbolic dialect and accepts object oriented features. It was chosen for its 
performance, easiness of portability to a new system and facility of adapting 
the environment to a different aplication. As an example, Aida, an UIMS like 
language, is built on top of the object kernel of Le LISP, Leyx. Objects 
designed with Aida are strongly structured and obey the object oriented 
programming paradigm: they react to methods and they are true encapsulated 
entities including data ani programs. Their structure adapts to more general 
rules of virtual objects in circuit design: they offer inputs, outputs and an 
explicit internal structure in the case of composite objects (i.e. MACROS = 
objects including other objects). 

Operator inputs and outputs are also encapsulated into autonomous objects 
featuring data flows with connect-disconnect methods, flow type 
compatibilities. The reason why pins have been considered autonomously 
under the form of objects, stands in the efficiency of managing locally 
multiple coherence controls at the very level of connections. It is not worth 
assigning this task to operator objects: as is, several differently flow-typed 
pins (Image, neighborhood, pixels ... ) are modelled and interconnected 
according to precise, yet simple, rules. 

Thanks to pins, objects interconnect with each other to constitute graphs. 
Graphs can be cyclic; if they are, the differences show in the graphic display, 
and in the control of an hardware operator loop at a very low level. Object 
graphs, say MACROS, represent either directly implementable processes, or 
virtual processes. "Virtual" stands here for "unable to be implemented 
directly", i.e. a process to be transformed or sliced, using intennediate added 
memory or operative units. Graphs represent also some fuzzier entities such 
as blocks of code in some common language or nsp instruction files. Thus 
macros are composite objects, in the hierarchical frame sense (Minsky, 
Bobrow), which incorporate other objects. The structure field is the computer 
link (pointer) between external and internal aspects of a macro, under the fonn 
of object and connection list. One of the main interests of macros is the 
functional resemblance between their interface and external aspects to those of 
atomic operators. As a consequence, whether they are composite or not, all 
objects are handled in an homogeneous way by the various system tools. 
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G.6 - COMPORTMENT AL LAYERS & FACETS 

Multifacet operators 

As already mentioned, the internal objects structure obey the paradigm of 
object oriented programming in being given facets perspectives, or frame 
slots (Bobrow, Minsky, Jay, Sussman) to express abilities to integrate 
informations about particular uses, depending on actual necessities. For 
instance, multiple news and facets allow an operator to be considered a 
structure of command words at the hardware level or a graphic interface to 
access its own programming or documentation. Let us recall that "facet" refers 
to the many facets of a diamond that reflect light in multiple directions. In 
computer science, a facet corresponds to a functionally specialized interface 
which communicates with objects and manipulates specific data of them, 
exactly as different programs would operate on some data. As soon as a 
considered object is involved in some activity, it is oriented towards another 
functional interface. 

Typical facets are: 
• Graphic interfaces: managing mainly graphic data and the object 

representation on a display, under the form of interactive boxes 
sensitive to the moese. On top of that, this facet direct user's actions 
towards other object facets, thus providing a standard channel for 
reactivity between this object and the programmer. 

• Documentation: offering texts for explanation, schematics or technical 
data about the operator hardware design. Links between graphic facets 
and command facets are also present to provide on line help while 
emulating an algorithm on the architecture. 

• Specification: describing the operator structure as a net list of 
components, transistors, gates and other layout masks. 

• Control (command): gathering orders and transmitting them to the very 
low hardware level to program hardware operators from their 
modelization, or control the emulation. 

It should be obvious how facets help implementing complex functionalities 
while allowing for some systematic code structuring, writing and debugging. 
Then facets may cooperate in building some complex functionalities and 
participate in relations of the "customer-server" type. This happens for 
instance in the graphical facet which interogates other facets of a given 
operator depending on services requested by the user. 

Multifacet graphs 

By adding facets to graphs, modelling relies on a double structural hierarchy 
that allows to manipulate independently of parallel programs, VLSI outlines, 
hyper texts structures, themselves built of graphs. Atomic elements of these 
structures host the non reducable and unsplittable information about 
operators, and determine an autonomy of organization independent of the 
containing super structure. Thus, by modelling parallel processes in IP under 
the double form of operator graphs and hirarchies of individual operators, 
independent code can be written and organized among the various facets to 
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plot the hardware, document the functionality on line, or to extract a net-list 
representation of the operator. 

The benefits of this double structural hierarchy can be used, for example, to 
perform symbolic image processing. The I.P. symbolic features of objects are 
assigned to a specific slot which can store affinity or association properties 
between operators (for instance: neighborhood + convolution ==> 
homogeneous transform) or features specific to sophisticated processing 
(smoothing while preserving contours). The key is to realize that deducting 
global features associated with an operator graph is made easier by using the 
connectivity between operators and the local properties stored in the operators 
themselves [ZSF92]. 

Another benefit of this structure is to provide a friendly interface to a 
database. To accomodate the complexity of the emulator, the user specialist in 
IP is very much in need of a friendly interface since he is not supposed to be 
aware of the machine inner software and hardware. Such a system furnishes all 
needed information about the operators, their functionalities, or the way their 
parameters must be set, through slots named "interactive documentation". The 
activation of the slot "documentation" for a given operator leads to an 
hypertext structure. This text structure allows the user to either browse the 
documentation or to search for specific information about a macro. 

G.7 • NOVEL COMPUTING SYSTEM 

The distribution of activities among the various graph operators is an 
important aspect in the way the emulator is controled. It makes possible the 
implementation of interpreted commands at the level of hardware operators. 
Such interpretation is done through the graphic interface. It is a straight 
implementation of the "reactivity" paradigm of the Smalltalk language. 
Execution orders (command facet) specified by the user are translated into a 
series of messages for the controller of the operator or into orders for the 
internal configuration of objects. The same process can be applied for 
connections at a much lower level: when the user connects two operators by 
their "pins", the interface facet of these pins take into account the link, 
locally verify the consistency of the connection, and eventually, generates 
orders back to the user. This kind of interpretation mechanism truly 
implements the notion of "rendered service" through its multiple facets. These 
facets can be the visual representation of an object on the screen through 
which the user gathers documentation, functional descriptions or control 
parameters 

This kind of direct handling of operators, connections and graphs presents two 
advantages: 

• The interactive design of I.P. programs. 
• The tuning of object parameters while being directly "plugged" into 

the hardware. 
One is therefore able to process, in real time, images in a way that is 
immediatly explicite to the user. In so doing, we create a sort of virtual 
"visualization driver", truly equivalent to a hardware driver, that can be 
instantiated on any node of the graph (application program) being conceived, 
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and permits to watch the effects of a parameter tuning or a connection
disconnection operation between the operators of a graph. This way of 
manipulation corresponds to our goal of considering the system as a true 
CAD software tool as well as a specialized simulation tool for image 
processing, except that processing and execution monitoring are emulated in 
real time. 

This, of course, can only be done as long as enough resources are available on 
the emulator to permit the execution of the algorithm in real time. If the 
emulator lacks resources to permit a real time emulation of the algorithm (as 
will necessarily be the case with complex algorithms), one has to use notions 
of program compilation and execution capable of handling such limited 
resources. 

To accomodate this kind of situation, one had to define a process of 
partitioning processing virtual graphs into sub-graphs. For each sub-graph, 
enough resources are available and execution can proceed in real time. A 
reduced form of the interpretation principle previously described can be applied 
where the effect of modifying a parameter will only take effect when the 
corresponding sub-graph is executed. One must then precompile a program by 
decomposing it into several sub-graphs whose execution are done sequentially 
using the emulator resources. This process uses the image memory module of 
the emulator as a way to temporarily store image flows. This concept, of 
distributing the activity associated with a graph, allows a smooth transition 
between the classical entirely sequential Von-Neuman execution and 
generalized parallel execution where one varies the "granularity" of operations 
that can be implemented by the emulator. Indeed, by identifying "slices" of 
interconnected and executable operators in the graphs and by storing 
intermediate results generated by these computational slices, we are 
partitionning the computational load in a way that greatly increases execution 
concurrency and takes advantage of the parallel execution ability on the 
emulator. 

The slicing of operators, briefly speaking, is done by searching the graph for 
high level operators and evaluate the resources configuration of the emulator 
as its resources gets allocated. When a conflict occurs between operators 
resources (operator already allocated by a node in the graph), one determines in 
which other branch of the program execution can be pursued. This process is 
repeated until a global execution scheme has been found that minimizes 
timing constraints (execution as short as possible) while maximizing 
memory usage (Morphee module in Hecate). Tools are available that measure 
performance expectation of a particular implementation in terms of 
communication bandwith, memory usage and operator efficiency on the target 
system. Once a satisfactory solution has been obtained, emulation is done by 
sequencing parallel branches in the graph through their control facett. 

The search for a "good" partitionning solution is mainly heuristical because 
of technological constraints on operators (clocking scheme, data volume to 
store in memory), the topology of the virtual graph we need to emulate or the 
type of needed operators. Since a global and optimized management of parallel 
command is out of reach at this level because the problem is too complex, 
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and since it is better done at the circuit synthesis level if really required (see 
section H), we are implementing this methodology of overlapping graph 
branches because it provides the following aspects: 

• This method is not, most certainly, optimal in term of parallel 
implementation but it works and gives a non-degraded functional 
aspect to the global system, specialy with "large" processes. 

• Above all, it is evolutive. The environment in which this slicing is 
done is a high level one where all the information about performances 
of an implementation are easily available and manageable. 

Another integrated concept, that results from the formalism of object-oriented 
databases and behavioral facets, is the combined fonctionallbehavioral 
simulation. Behavioral facets can be implemented for macros as well as for 
operators; because they all are regular objects. The behavioral facet of a macro 
contains text (for example sequential VHDL code) that describes the 
simulation code for that macro. On the other side, behavioral facets for 
operators hold either sequential code, or traditional simulation code 
(descriptions in terms of gates, transistors, registers, etc.), or both. So, 
depending on how one stimulates the behavioral facet of a macro (behavioral 
description or VLSI structure), one determines by the same token the 
simulation mode of the macro in a transparent way. 

Let us remind here that the real significance does not rely in the specific 
implementation of the combined fonctionallbehavioral simulation aspect of a 
macro, but in the fact that it appears in our fonnalism only as specific facet, 
a simulation mechanism, that could be extended with any other simulation 
mechanism. Consequently, the concept of an object database where one 
separates and controls the activities of each object seems even more powerful 
as it provides straightforward ways to implement each of its activites. 

G.S. • DIAGNOSTIC 

Let us recall that the goal of our two systems (Hecate and the DATA-FLOW 
FUNCTIONAL COMPUTER) is both, the real time emulation of complex 
image processing processes, but also the integration under constraints of 
VLSI circuits that become hardware implementations of emulated algorithms. 
What really counts is the system aspect that such a conception tool can 
present under its two aspects: emulation and integration. Diagnostics is 
precisely the set of techniques that formalize and materialize information 
transfers between these two domains. 

The formalism previously described takes another dimension when one 
realizes that it supports, in a natural way, diagnostics functions. In the same 
way that programming and emulation tools previously defined provide user's 
help, symbolic programming or coherence verification by relying on the 
multiple facetts of operator objects, diagnostics represents another similar 
behavioral facet that extracts VLSI information for these objects. 

Given a graph built either by the tool that builds image processing programs 
or by the compiler, the diagnostic system interprets links and VLSI facets for 
objects in the graph to generate a net-list of structural features, in a way 
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similar to any CAD system. This mechanism is quite powerful and flexible 
because, similarly to the way bebavioral facets describe simulation or 
emulation behaviors of objects, VLSI facets can be implemented in terms of 
microelectronic structures (circuit, transistor or mask net-lists) or in terms of 
behavior (VHDL or HILO code). Depending on these options, one obtains 
code that is directly usable by a routing tool or code that can be resimulated 
locally where a more detailed look is necessary. Let us emphasize that this 
characteristic of dual functionaIlbehavior environment is a "natural" 
consequence of the ability to manipulate and exchange the various facets of 
objects in the database. 

G.9. - A NOVEL PROGRAMMING ENVIRONMENT 

From a methodology point of view, we believe that a major interest of our 
approach is its proof of the practical power and ability of object-oriented 
programming techniques to formalize very complex information processing 
systems such as the HECATE machine. In our case, the techniques 
themselves used to manage the object-oriented database, solve directly the 
problems of diagnostic of VLSI circuits, interactive and delayed control or on
line documentation. But moreover, the fact that several concepts about 
hardware description languages or emulation can actually be described under a 
unique formalism, leads us to believe that their software implementation is 
very close to what we have done. More importantly, the concept of efficient 
emulation through rapid prototyping of complex integrated circuits the way it 
has been implemented in the Image Processing domain leads us also to 
believe that this solution is a good one and that the necessary tools are already 
available. 

H - SYNTHESIS 

H.t - PROBLEM 

Task partitionning 

Having obtained a data flow description of the algorithm (vision automaton), 
we now want to generate from it a target architecture. This final phase of our 
process consists of automatically synthesizing and integrating such 
description into a target architecture. This phase can be decomposed into two 
tasks: 

Data path synthesis which itself can be further subdivided into 
operation scheduling, operator allocation and operator assignment (or 
operator binding). 
Control part synthesis which is further composed of micro-instruction 
scheduling, state aSsignment or boolean optimization depending on the 
choice of a specific controller strycture. 

In many systems these two parts (data path and control synthesis) are 
synthesized in two successive steps. The first step provides a data path layout 
from a behavioral description of the algorithm. The second one provides a 
control part description from the data path and associated CDFG using a 
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control state graph. Since these two steps are strongly interdependent such 
artificial splitting hampers the quality of the solution. 

Before describing our way of solving this problem, let us describe in a more 
detailed fashion, the purpose of each phase of the synthesis process, which 
assumes a synchronous machine. 

Data path synthesis 

Operation scheduling determines the time sequencing of operations. Given a 
data flow graph, the goal is to decide which operations (add, multiply, etc.) 
will be performed at each cycle. This is done by manipulating the graph so as 
to optimize the performance of the system; knowing there is always a trade
off between execution time (depth of the graph) and computation area (width 
of the graph). The operator allocation phase selects the number and types of 
hardware resources needed (for example: 1 ALU, 2 adders and 1 multiplier) and 
the performances of each operator (for example: a 12 bit adder with look ahead 
carry unit). The operator assignment step determines on which hardware 
resource (operator) each operation of the graph will be implemented. This step 
affects the types of interconnections (bus, registers and multiplexors) between 
operators; therefore the goal is to globally minimize the number of 
multiplexors and registers, and the length of interconnections (by typically 
varying the number of registers). Once all processing resources have been 
selected, the floorplanning step grossly places all modules on a two 
dimensional grid (bus locations are typically not laid down at this stage). 

Having selected all data path components of the architecture, one needs to 
control it (control is the process by which one activates the right module at 
the right time; for example: load a register, select a multiplexor, program an 
ALU). 

Control-part synthesis 

Once the data-path is set, we know exactly which resource need to be selected, 
how (values of the control signals) and when (which time slot). The 
description of the behavior is then given by an intruction list. From this list 
we can extract the logical equations of all output signals. At this point, many 
implementations are allowed and the synthesis system have to choose one of 
them depending on specific features to be integrate (existence of many 
branching schemes, subroutines, etc ... ) and on specific constraints to respect 
(area, speed, etc ... ). From these implementations, two models can be 
generalized (classified by their degree of optimization) : 

• Microprogrammed controllers, 
• PLA-based controllers. 

The first one is a classical model where each instruction is located in a 
specific address of a ROM and a sequencing operator (generally a counter) 
validate one of them at each cycle. Some external hardware could be added in 
order to implement specific behaviors (address stack for subroutines, next
address multiplexor for conditional branchings, etc ... ). The second model is 
the generalized implementation of a finite state machine where a 
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combinatorial block generate instructions (primary outputs to data path) and 
next state from conditional inputs (primary inputs from data path) and present 
state. Many sequencing schemes can be implemented with this model. 

slale 
memory 

Figure 10. Structure of a finite state machine 

For each model, some optimizations can be made: 
• Microcode compaction for microprogrammed controllers [Lands80] 
• State assignment and boolean minimization for PLA-based controllers 

[Ama] [PauI89a] [Villa90] 

A lot of work has been done on PLA-based controller synthesis due to their 
attractive characteristics: Layout regularity, relative design simplicity, 
testability, etc ... These works concern optimal state assignment (choice of 
the correct boolean state code minimizing the amount of hardware needed to 
implement output equations) and finite state machine decomposition (reducing 
the total area and critical paths). A brief survey of these tasks is given bellow 

• Optimal state assignment: In a PLA-based controller, each output is 
computed in a sum-of-product way. A PLA consists of two logical 
planes (AND-plane and OR-plane) where each intermediate signal 
(product-term) is an AND-combination of the inputs. Every boolean 
function given in a tabular way can be implemented in a PLA : Each 
input combination generate a product-term (active only when this 
combination is applied to the PLA) and each output is an OR
combination of the product-terms. 

i1 i2 i3 i4 01 02 

001 0 1 1 
o 1 0 1 1 0 
o 1 1 1 00 
1 1 00 o 1 
1000 1 1 
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Figure 11. Tabular description and PLA implementation of a boolean 
function 

One can see that each input combination generate a product-term and the 
complexity (area) of a PLA is directly proportional to the number of 
product-terms. A PLA-based finite state machine is nothing but a 
logical function where inputs are the conditional signals generated by 
the data-path and the state codes of the controller (inputs of the AND
plane) and outputs are instruction and next state codes (outputs of the 
OR-plane). This implementation is the generalized model of a 
MEAL Y finite state machine (outputs are generated by transitions in 
the state graph). Given a symbolic description of a MEALY machine 
(the states are represented by symbolic values in place of boolean 
codes), the optimal state assignment problem consists of choosing the 
proper boolean code for each state minimizing the number of product
terms. 

Decomposition of finite state machines : The goal of this task is to 
reduce the total area of a controller by decompose a unique machine 
into one or more submachines. The techniques used are based on 
detection of "factors" which are, in fact, subroutines and on 
implementation of these factors on independant submachines. Some 
experiments show that these optimization reduce both the total area of 
the controller and the critical paths (speed up the controller). 

After optimization of the controller and the data-path, the netlist of operators 
we get can be given to classical placement and routing tools. 

The figure below summarizes the organization between the various tasks that 
compose the synthesis process. It should be clear that such process is, before 
all, a global optimization problem. As a result, the generation of the data 
path and control components of the the target machine is done by means of 
global simulated annealing techniques that permit the simultaneous 
integration of many criteria. 

Control constraint' 

• Control 
[Mta Row Fintte 
Graph Schu"ing ~atorBincing Data Path ",Instruction Scheduling SO ... 
(COFG) Operator Alocation Re9ster Mergi"lg Description State Assignment Machine 

ModUe Selection ~ FloorpIilMing Boolean Optimization 
Netlist of 

i t 
Operators 

I DATABASE I 
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Figure 12. Phases of the synthesis process. 

Previous work 

Much work has been done on data path synthesis alone [Park86] and control 
part synthesis once the data path has been laid down [Nagle82]. The 
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techniques used for control part synthesis are based mainly on microcode 
optimization for microprogrammed controllers and on boolean optimization 
for finite state machine controllers. Taking into account earlier control 
constraints used by the high level synthesis process (such as the control part 
area or the number of control signals) would make possible a greater 
optimization of the control part. 

Some attemps of integrating control considerations into data path synthesis 
goes back to ELF [Gircz84). In this system, the optimization algorithm, 
which is based on graph grammar, uses a cost function with a control signals 
complexity measure to estimate control overhead, but only in terms of 
control interconnection complexity; its estimation of the real cost of the final 
control part design (ie surface, performance) is too rough. In Yorkstown 
Silicon Compiler [Camp87], structural synthesis is mainly oriented towards 
minimizing control states, but it is not clear how the data path constraints are 
handled. One of the most recent systems is CHIPPE [Brew90), which takes 
into account a number of constraints. Its underlying method is based on the 
iterative refinement of an architecture not targeted to a specific type of 
applications (unlike CATHEDRAL II [Goos88) or SYCO [Varin87]). Some 
control aspects are taken into account during scheduling, but they are limited 
to delay considerations. 

Our approach 

Algorithm 
to be run 

~-------------------------

OPTIMIZATION 
UNDER 

CONS1RAINTS 
Architecture 
Com iler 

DERIVED 
AUfOMATON 

Figure 13. System Overview 

C.D.F.G 

Our approach [Verd87) has been to enable the integration of global control 
aspects (for example the total area of the hardware modules needed to 
implement the control part) by using the concept of regularity of a CDFG 
during scheduling. This measure is borrowed from a statistical estimation of 
the complexity (the diversity) of data transfers in the fmal design. Intuitively, 
if we consider that what is costly in terms of hardware resources are registers 
and multiplexors, a regular architecture will tend to use a few number of them 
and will use them all the time (at each cycle). Ultimately, if all resources 
were used all the time, control would be reduced to the selection of operations 
performed by the ALUs (multiplexing would disappear). We have been able to 
verify our conjecture that "the more regular a CDFG is, the simpler its 
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control part becomes"; meaning that the more regular the CDFG is, the less 
expensive (in term of multiplexed inputs and interconnected registers) the 
obtained solution becomes. Additionaly, we have identified a measure of 
"CDFG regularity" that can be injected into the operation scheduling process 
for better results. 

Usually the cost function minimized by the scheduling process in isolation is 
set in terms of the number of operators (multipliers, adders, ... ) for area 
computation and in terms of the number of machine-cycles for performance 
computation. With our approach, we have been able to show that we obtain 
several solutions with the same cost function in terms of area and 
performance. But these solutions, despite the fact that they get to the same 
area and level of performance, are still different because it is not exactly the 
same schedule. So, what does make the difference ? The difference is 
regularity! The cost of a scheduled graph is completely defined by its number 
of operators, number of machine-cycles and its regularity measure. In fact, 
when the scheduling process is performed, it acts directly on the regularity of 
the graph. We have therefore found the relevant features of a CDFG to 
"qualify" what we call "regularity" and to combine this information into a 
statistical variable. Taking into account such information about control 
complexity has several consequences that we will describe later. 

In any way, it should be clear that by simplifying the control part of a design 
during the scheduling process, one gets a better starting point for the binding 
process between operators and hardware resources. 

H.2 - SYSTEM DESCRIPTION 

Some previous work at our laboratory on Data Path Synthesis [Saf91] led to 
the decomposition of this phase into two independent algorithms: 

Algorithm I simultaneously performs operation scheduling, operator 
allocation and module selection using a simulated annealing technique 
that we enhanced by a pseudo-deterministic control technique that 
searches in a "realistic" design space. 
Algorithm II is a global optimization algorithm which simultaneously 
performs operator binding and register merging, while taking into 
account interconnecting costs and floorplanning. The search for a good 
solution, which accounts for low level physical information 
(fioorplanning), is made possible by this global optimization 
algorithm which also uses a simulated annealing technique improved 
by means of a stochastic technique that includes some notions of risk 
(area versus interconnection length). 

The search in the design space is guided by the global minimization of a cost 
function that includes application constraints and system characteristics as 
follows: 

• For algorithm I : Cost = F(surface, performance, power, ... ) 
• For algorithm II: Cost = F(floorplanning surface, number of registers, 

interconnect length, number of input 
multiplexors, ... ) 
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Taking into account new constraints is made possible simply by adding them 
into the cost function being minimized. 

H.3 - PROBLEM REPRESENT A TION AND DEFINITIONS 

The Optimization Algorithm 

We present here the optimization algorithm used by the scheduling process. 
The reader not familiar with the Simulated Annealing process can refer to 
[Laar88]. Particularities of our simulated annealing algorithm are as follows: 

• The architecture that we seek to synthesize is represented by a Control 
Data Flow Graph (CDFG) which is used as the initial solution to the 
algorithm. The random neighboring solution is obtained by applying a 
random move (transformation) on the current solution. 

• These transformations concern local structures in the graph. They are: 
• Isolated nodes. 
• Branches which are sequences of successive nodes such that 

each node is directly dependent on the previous one belonging 
to an adjacent step (machine-cycle), and has at most one child 
node. 

• Transformations are of two type: 
• Node or branch moves: A randomly selected node (or branch) is 

shifted-up or shifted-down. A shift-up (down) means that the 
node (or each node of a selected branch) is shifted from its own 
machine-cycle (step) to the one above (or below). 

• A module is selected in the database to implement an operation 
(this module differs from the preceding one by its performance, 
area, etc.). The database contains technology-independent 
descriptions of operators. 

• All these transformations respect data dependencies. 
• The cost of a solution is a measure of its qUality. The cost function is 

a weighted sum of the total area of the architecture (the number of 
modules multiplied by their area) and the total performance (the 
number of steps in the graph multiplied by the delay of the operators). 
Weighting of the various parameters allows the optimization to be 
biased in a particular direction in the design space (area or 
performance). 

• The schedule of the temperature, determined empirically, is as follows: 
Tk = Tinit . ak, where the parameter a depends on the size of the 
problem and k is the number of moves performed since the beginning. 

The simulated annealing method is well suited for this problem (the 
transformation from a high level behavioral description to a structural one) 
due to the very large amount of data when image processing algorithms are 
considered (our system is mainly oriented towards this kind of applications), 
and to the complex engineering knowledge needed to explore the design space 
(the stochastic search performs a good optimization without complex rules or 
heuristics). 

Definitions 
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To explain the originality of our approach, we first give some necessary 
definitions. A scheduled graph is an acyclic, directed and multistage graph 
where each node is assigned to a specific time slot. A Control Data Flow 
Graph (CDFG) is a scheduled graph. The only representation of the 
architecture we have is a CDFG. Presently the graph has to be connected (if 
the graph is not connected, we consider each sub-graph independently). 

Any node of the CDFG represents a boolean or arithmetic operation. Such 
node has as many links as the number of operands in the underlying 
operation. The node type is identical to the one of the operation. During 
scheduling, each node is temporarily assigned to a specific machine-cycle or 
step. 

An arc (or link) of the CDFG represents an interconnection network (bus, 
multiplexors, ... ) allowing data transfers between different operators. The arc 
length between two nodes in the CDFG is defined as the number of machine
cycles between these two nodes. 

A motif in the graph is an item representing both the length of an arc and its 
associated two nodes (the source and the destination respectively) (see an 
example in figure 14). Our data path model is a register-mux-operator model 
so each motif reflects a data transfer between two operations. 

The motifs are classified according to their type and value. The type of a 
motif is given by the one of the source and destination nodes for an associated 
arc. Its value is the distance (or length in terms of the number of machine
cycles) between the two nodes. We will use the following notation: Litstd is 
the length of the motif i, where ts is the source type and td the 
destination type. 

The regularity of a scheduled graph is computed from a statistical measure 
of the diversity of its motifs. It is the inverse of diversity, where diversity is a 
weighted sum over all standard deviation of the motifs. 

Mean of motifs lengths of type tstd: 

mtstd = Ststdi=1 (Litstd ) / Ntstd 
Standard deviation of motifs lengths of type tstd: 

Ststd2 = SNtstdi=1 (Litstct>2 / Ntstd - (mtstd>2 
The graph regularity is given by: 

R = 11 (SiCEts,jCEtd ( SijPiPj» 
These weights (Pi & Pj) increase the minimization of the diversity of data 
transfers between the more frequently used operations in the graph. 

Let us illustrate these computations through some simple examples. In the 
figure below, the lengths of the two motifs are: LZ +x = 2 and LX ++ = 1. 
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3 

Figure 14. Two motifs "+x" (left) and "++" (right) 

Solution 

Our approach is based on tbe use of a simple heuristic: tbe more regular a 
sheduled graph is (in terms of its data transfers and tbe number of operations 
in a given machine-cycle), the simpler its associated control (in terms of area, 
number of control signals) is. One can find an illustration of this conjecture 
with systolic architectures where the control part is reduced to a simple clock 
distribution. This is illustrated by a simple case (figure 15) where it is easy to 
see tbe impact of increased regularity on the control and data patb complexity. 
The increase of tbe interconnectivity (bus, registers, multiplexors) in tbe 
irregular example (the less regular graph) leads to an increase of tbe control 
complexity (more control signals) and area. 

~H 8 
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corresponding implementations. 

311 

Notice that, as mentioned in [PauI89b], the configuration with the lowest 
global cost is not necessarily the one with the minimum number of registers. 
Therefore, in the scheduling process, measuring only the number of registers 
is irrelevant for having an indication on control complexity. And it seems 
difficult, to say the least, to know the number of multiplexors prior to the 
binding process (before the assignment of registers and operators). 

The potential regularity of a scheduled graph depends on the topology or 
nature of the algorithm to be implemented. Thus the regularity that can be 
obtained with a particular graph is bounded to some fixed value. 

The problem is to fmd a way to quantify the regularity of a scheduled graph. 
The solution we have selected consists of decomposing a graph into a set of 
motifs, and to make a statistical analysis of these motifs. The advantages of 
such an approach are as follows: 

A motif gives an indication about the number of data transfers between 
two nodes - thus between two corresponding operators (data transfers 
are the most costly in terms of needed control signals). 

• The use of statistics inherently compresses data; Whence easier 
handling of a large amount of characteristics needed in these processes 
and computation speed up. 

These "motifs" are being typed and any type is taken from a bounded set 
(number of different operations = T) so we have T2 types of motifs where the 
standard deviation has to be expressed. Moreover, the total number of arcs in 
the graph is well known and constant (it never appears or disappears a data 
transfer during the scheduling process) so it is possible to use classical 
statistical measures (such as mean and standard deviation) in order to evaluate 
the graph regUlarity. For each type-set of motif, we compute a standard 
deviation of the values of each motif that indicates the global regularity of the 
graph. 

H.5 - RESULTS 

Sched uUng Process 

We list below some of the results we have obtained when applying our 
method to the fifth order wave filter example. Starting with the same 
constraints concerning data path area and performance, we obtained two 
different solutions with the same number of operators and machine cycles but 
with different regularities; Indeed one of these solutions was found by a 
scheduling process taking into account the regularity constraint while the 
other one was found without any regularity constraint. The scheduled graphs 
(figure 16) have the same basic characteristics: number of adders: 3, number 
of multipliers: 2, number of machine cycles: 16. The respectives computed 
regularities (the higher the number is, the more regular the graph is) are: 
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• For the more regular: Regularity = 1/33 
• For the other graph : Regularity = 1 / 67.3 

The CPU time required for the scheduling process was about 1 min 50 sec. on 
a Sun SparcStation 2 with or without regularity computation. 

Binding Process 

Our target structure for the control part of the architecture is a simple 
microprogrammed controller. The columns in the instruction memory 
represent control signals for each module in the data-path (adders and 
multipliers if needed, registers, multiplexors) while each line represents a 
machine cycle. The estimation of the control complexity (control cost) is 
nothing but the instruction memory area (total number of bits in the 
memory). We choose this control structure because of its simplicity since our 
goal is not to implement the actual control part synthesis but to take into 
account control constraints during the data-path synthesis. Including control 
structures such as branching and sequence breaks do not alter the method since 
in this case only the number of motifs is modified. 

Controlar~ Mux Input Re~ister Iteration CPU tim 
I Re~ular 728 43.2 9 3830 41.0sec 
I Irreltular 934 51.8 11 4058 45.5 sec 

I Gain 22% 16.6% 18% 5.6% 10% 

It is clear that taking into account the regularity of the data-flow graph during 
scheduling allow the binding process to converge towards a better solution. 

0.6 • PERSPECTIVES 

The relevance of our proposed method is anticipation: indeed, with this 
method, the impact of scheduling on control part synthesis is taken into 
account even before the binding process for data path synthesis is performed. 
This anticipation has been made possible through the use of statistics that 
measure the global characteristics of regularity for a scheduled graph, i.e., the 
CDFG. 
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Figure 16. The irregular scheduled graph (left) and the regular one (right) 

On a realistic enough example such as the fifth order wave digital filter, we 
have obtained a significant difference between the regularity of the two 
scheduled graphs (for exactly the same number of operators: 3 adders, 2 
multipliers) and a decrease of 22 per cent of the control part area. Therefore, 
we have shown that at this level of synthesis (the scheduling phase), we 
cannot neglect this regularity measure. 

The loss of "distinguishability" due to the use of statistics presents no 
drawbacks, since at this level of the synthesis only global characteristics are 
needed. In fact, handling more precise information related to control 
complexity (for instance doing the binding and the scheduling process 
simultaneously) would be tedious and would not improve design quality. This 
especially true when one thinks of the other issues such as partitioning, 
optimal number of clock phases, multicycling and chaining of operators, etc., 
not to mention testability, fault tolerance and correctness (formal methods, 
simulation, ... ). 

Our goal is not to design the control part while performing the data path part, 
but to try to subject the data path to the control constraints. In doing so, we 
think we have found a way for a better solution to the actual design of the 
control part. One possible extension of this proposed method is to facilitate 
the selection of a control implementation model based on regularity 
characteristics determined from the very beginning (i.e. the scheduled graph or 
CDFG). These rules may define the controller type, and this can be done 
before the run of algorithm II (binding process and floorplanning) for data 
path synthesis. Another extension is to use the CDFG regularity to estimate 
the number of product-terms of a PLA-based controller during the scheduling 
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phase. Other clues indicated in [Mal85] about the performance and testability 
of many different controller implementations can be added. 

We have found a way, in addition to avoid simultaneously performing the 
binding process with scheduling, by adding a "regularity measure" to the cost 
function, to obtain a scheduled graph as good as the one we would have 
obtained while performing simultaneously the binding process and the 
scheduling. We achieved a better understanding of what improves a given 
scheduled graph in terms of control complexity and how the binding process 
affects scheduling. In sum, the added term of regularity measure minimizes 
the control complexity (through data transfer dispersion) as much as the 
binding process does, but with far less computational complexity. 

I - CONCLUSION 

In this analysis, we have tried to show that the complexity of future systems 
demands that new and radical methods be defined to allow for efficient 
designing and testing. We have presented an approach that provides an 
equivalence between the specification of an algorithm and its implementation 
on a particular architecture: if an algorithm can be specified, then it can be 
implemented, and vice versa. We have chosen a Functional Programming 
formalism as a means to express computations that must be performed, and a 
Data Flow execution model to implement the program. The specification 
phase is linked closely to the emulation of an algorithm to prototype and 
validate its functionality; after all, the only way to make sure the solution can 
be implemented in hardware is to build one. This is quite different from 
simulating the solution as one is never quite sure the physical system will 
behave identically to the simulated one. For complex systems, simulation can 
be quite time consuming and severely limits the number of iterations that can 
be performed to debug the system. On the other side, emulation at normal 
operative speed, provides an instant feedback that generates a truly interactive 
debugging environment. Another side benefits of the equivalence between 
specification and hardware implementability is that, as a programer, you 
optimize simultaneously and transparently the algorithmic solution and its 
implementation on a target machine. This is a departure from classical 
approaches where one designs an algorithm independently from the team that 
will adapt it to the target machine. It is clear that this way of doing is both 
wasteful in human resources (two teams instead of one) but also in terms of 
algorithmics efficiency as the original thinking that went into the design of 
the algorithm and that lead to a carefuly organized solution, is completely 
lost. Let us also add that the real time prototyping of an algorithm can be 
economically beneficial if one realizes the solution does not perform as was 
expected; the ability to wastefully experiment provides a truly grandiose 
dimension to ensuring that the seeked solution is really what is needed. 

Once the programmer is satisfied that the algorithm solves his problem and 
that at least one hardware solution exists, the building of a target system that 
matches physical constraints is done automatically by using a description, 
provided by a diagnostic module, of resources actually used during the 
execution. In so doing, we separate constraints associated with a problem into 
two types: those that deal with the functionality of the solution (emulation), 
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and those that deal with the final system implementing the solution 
(automatic generation of target system). The diagnostic phase is by far the 
most difficult one to handle. Typically the emulator will be built from 
general modules offering multiple functionalities. At execution time some, 
but not all, of its functionalities will be used (ex: add with an ALU). So it is 
clear that, to avoid wasteful implementations, the ability to match the 
constraints of the target system will be facilitated by the fact we will try to 
integrate only needed resources. If in the general case it is very difficult to 
separate resources used for the purpose of emulation from those truly needed 
by the solution, we have shown that the diagnostic phase can in fact be 
eliminated with the proper specification formalism: a dependence data flow 
graph. With such a graph, two approaches can be used to generate a target 
architecture: compilation, where, in a traditionnal manner, one integrates all 
resources specified in the graph, and synthesis, where one manipulates the 
graph (addition / removal of operations) to obtain the most efficient 
architecture. 

Today, we are validating our approach with a massively parallel emulator, the 
Fonctional Calculator, which is made of 1024 identical data flow processors. 
We have emulated many algorithms, from traditional low level convolution 
filters to high level target tracking techniques. Of all phases, only the 
synthesis phase remains to be validated with the construction of one or 
several VLSI circuits. We have selected a "reflex operator" that detects 
dominant line segments inside an image as an application example. It has 
already been emulated on the Fonctional Calculator (3 weeks of effort using 
the standard library) and we have therefore verified that it is functionally 
correct; its construction in the form of some VLSI can now be considered 
positively. 

Let us finish by saying that when the project was started, we anticipated a 
radicaly new way on conceiving and constructing machines. Although we 
have not yet reached our ultimate goal, we have shown that our approach is 
valid and will lead very soon to our first image processing hardwired operator, 
automaticaly built from speCification. Such an approach is, we believe, the 
only one that can lead quickly to the validation and construction of complex 
new designs meeting stringent realization constraints. 
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INTRODUCTION 

This chapter is concerned with building real-time digital signal 
processing systems for high throughput, data stream processors. These 
systems push silicon technology towards its limits, and the 
architectures are typically massively parallel, exploiting heavy 
pipelining. The highest throughput will be reached when each output 
bit is connected to a pipeline latch. These arrays are often referred to 
as bit-level systolic arrays [1, 2]. Our target applications include real
time video processing and radar return processing, but many other 
applications can be found in such diverse fields as machine vision and 
communications systems. 

There is a major difference between these architectures and the 
current architectures of DSP chips. DSP chips are essentially 
outgrowths of the early micro-controllers, in which a standard Von
Neuman or Harvard architecture core contains a single (or a few) 
general purpose ALU's containing fast multipliers. In this case, fast 
implies a low critical path between the input and output data of the 
multiplier. In bit-level pipelined systems, the important requirement is 
to match the data rate of the input stream to the clock rate of the bit
level latches. We are able to control the complexity of the switching 
circuitry driving each latched bit in order to match it to the required 
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data rate. This is not nonnally a concern with high speed designs, i.e. 
the circuit is designed to run as fast as possible and then it is applied 
to the application. Recent results, for example, have shown that even 
mature CMOS technologies are capable of synchronous pipelined 
arithmetic rates in the hundreds of MHz range [3]. Such techniques 
have recently been extended to asynchronous high speed CMOS 
architectures [4] with quoted speeds in the same range. In general 
purpose computational systems, there is nonnally a leveling factor 
based on the need to synchronize (either with clocks, or hand
shaking) disparate computational elements, such as those found in 
current DSP chips. For data stream architectures, however, that can 
operate as systolic arrays, the synchronizing requirement is very 
straight forward; the disadvantage is the limited use for such special 
purpose architectures. With the advent of ASIC technology, silicon 
foundries, and the wide spread use of advanced software for fast 
custom design, it is quite possible to consider the use of such special 
systems for even small production runs. Data stream high throughput 
DSP systems are such a target group. 

This chapter is concerned with constructing integrated systems for 
arithmetic intensive digital signal processing (e.g. linear filtering), 
using bit-level systolic array concepts [1, 5]. In such architectures, the 
internal pipeline rates are matched to the signal data rates, and every 
bit (or group of bits) is pipelined. This is in contrast to the design of 
cascaded combinational circuits for arithmetic processors, where the 
goal is to reduce the critical path time through the cascade [6]. In 
particular, we will show that judicious use of new number theoretic 
mapping techniques can improve the synchronizing problem, by 
allowing most of the calculations to proceed as bit-level independent 
data streams. We will also examine the use of such a design approach 
to two other computational problems; in fact, our starting point will be 
a simple bit-level pipelined adder, and we will also consider the use of 
these techniques in the design of redundant arithmetic units for 
general purpose DSP ALU operation. 

With regard to speed requirements, data throughput rates are 
dependent upon the signal bandwidth. For example, audio and 
modem data transmission rates are in the range of tens to hundreds of 
KHz and standard video and some radar system data rates are in the 
tens of MHz range. We see that the throughput rate for systolic 
solutions in these application areas are at least an order of magnitude 
lower than the speeds recently reported for mature CMOS 
technologies. Even uncompressed HDTV data rates (in the range of 
100MHz) are a factor of 5 lower than reported speeds [3]. It is 
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therefore useful to consider trading off speed for greater functionality 
within each pipeline stage, and reaping the benefits of reduced area 
and power consumption. This chapter, therefore, also explores these 
possibilities, by combining a TSPC pipeline [7] with dense multiple 
output NFET blocks based on minimized binary trees; we term such 
blocks switching trees [8]. We also present preliminary fabrication 
results and techniques for on-the-fly module generation of the bit
level blocks. 

DA TA STREAM PROCESSING 

Real-time OSP computation is normally performed on data streams. 
The data is fed to the processor one sample at a time, at the natural 
data rate of the generating system. An example might be the 
processing of video data from a CCO camera. If the camera has a 
sensor containing 106 pixels, and produces 10 complete frame scans 
every second, then the natural output of an analog to digital converter, 
connected to the CCO analog output, is 10M samples per second. If 
the OSP processing algorithm is an image enhancement filters that 
retains the original image size, then the output rate of the processor is 
the same as the input rate. If we are extracting information from the 
data (e.g. defects in the image) then the output rate may be much 
lower than the data rate. Other examples of different input and output 
rate are in interpolation and decimation procedures. An example of 
an interpolation procedure is the generation of a high rate data from 
the 44.1KHz sample rate used to store audio signals in compact disc 
format. For this application we interpolate up to a much higher data 
rate (say 16 times oversampling) prior to analog conversion, in order 
to reduce the complexity of the analog filter used to recover the base
band audio signal. The precision, repeatability, and mathematical 
flexibility of a digital system is to be preferred over an equivalent 
analog system (an anti-aliasing filter with a sharp cut-off at about 
20KHz). 

In this chapter we will assume that the processing system operates at 
the same input and output data rate. In this case we can use bit-level 
systolic arrays as our basic architectural tool, where processors operate 
at the individual bit-level and each output bit is latched. 

DSP CORE VS SYSTOLIC ARRAY 

In order to examine the fundamental difference in building systems 
with programmable rather than fixed array architectures, we will take 
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the example of two architectures used to build similar DSP one
dimensional FIR filters. 

Our starting point is a DSP core [9] that is used as a building block 
within an ASIC (Application Specific Integrated Circuit) chip. A 
block diagram of a typical core is shown in Fig. 1. This particular 
core has been presented by Baji [10], more recent examples of 
complete chips also use similar architectural styles (e.g. [11]). 

Data Add 
Bus Bus 

In Din/D Ain/RD/CI 

1-

Fig. 1 DSP Core 

This core processor has a reconfigurable high speed data path 
supporting several multiply/accumulate functions including 16-tap 
linear-phase transversal filtering, high-speed adaptive filtering, and 
high speed discrete cosine transform (DCf). The DSP core consists of 
an 8x8 modified Booth parallel multiplier (MLT) , two 12-bit 
arithmetic logic units (ALUA and ALUB), two sets of 2x8x12-bit 
accumulator arrays (ACCA and ACCB), 8-bit x 16-word coefficient 
memory (CM), and a 4-bit x 64-word coefficient address memory 
(CAM). A programmable CMOS phase-locked loop circuit is 
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provided as a clock pulse generator for high speed operation. It has a 
40-bit x 8-word microprogram memory. To implement a linear-phase 
FIR filter, the core will be configured as shown in Fig. 2a. One tap of 
the filter is processed in 10 ns. The core will be configured as shown 
in Fig. 2b to implement a discrete cosine transform (DCT), one point 
DCT will be processed in 160 ns. 

(Out) 

In 

ALUB 

CII 
Cl2 

ALUB 

In 

Out 

ALUB 

(a) 

C21 
C22 

ALUB ALUB 

Coefficient 
Memory 

Accumulation 

Buffering 

(b) 

S5 

Cnl 
Cn2 

Fig. 2 DSP Core configured as (a) FIR filter; (b ) DCT 
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It is clear that the limited resources of the core unit are re-used several 
times within each computational cycle. Even if we build sufficient 
processors to have dedicated hardware for each multiplier and adder 
in the filter or DCT architecture, the data will still have to be routed 
into the arithmetic units via the bus structure. Typically, the ALU will 
be built to accommodate a suitable wordlength for a variety of 
problems that may be programmed into the core; this may be overkill, 
however, for some problems. A typical use of such a core is in a 
shared resource mode, in which arithmetic and register resources are 
allocated according to some suitable strategy [12]. Although this 
represents a flexible solution (we may program many different 
algorithms onto a single generic structure, it does not represent the 
optimal mapping onto a specific algorithm. The very fact that we have 
bus connections to allow the sharing of resources, flies in the face of 
an algorithm that maps into a locally connected systolic array. 

The buses that are used to move data around the chip, and the 
connected registers and processing elements have a combined large 
parasitic capacitance that has to receive charge from the power supply 
in order to register two complete changes of state (e.g. 
'0' ~'1 '~'O'). This charge transfer translates into power dissipation 
as CbusV~Df, where Cbus is the total bus and connected modules 
parasitic capacitance, V DD is the power supply voltage and f is the 
frequency at which this transition occurs. In large systems, the bus 
capacitance can be many tens (if not hundreds) of pico farads. For a 
100 pF bus experiencing a logic cycle (that completely charges and 
discharges the bus capacitance) every 20ns on average, the power 
dissipation is 125mW (the power can be reduced by using low voltage 
swings on the bus and using sense amplifiers on each connected 
module to detect the changes). 

This dissipation occurs every time there is a complete logic transition 
between two modules connected to the bus. Contrast this to the 
situation where the connections between modules can be hardwired 
and the modules can be placed adjacent to each other on the chip. For 
the same equivalent speed of operation we can a) slow down the rate 
of logic transfer (many connections are replacing a single bus) and b) 
the parasitic capacitance is drastically reduced. These two effects taken 
together can considerably reduce the power dissipation during a 
complete logic transition. 

An example of a limited, but much more efficient architecture is the 
bit-level systolic array correlator shown in Fig. 3 . The array operates 
with single bit coefficients, but may be expanded to operate on multi-
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bit words. The individual cell is basically a gated full adder with the 
functionality shown in eqn. (1). 

a oUl = aill 

YOUl = Yill (9 (aill 1\ XiII) EEl cill 
(1) 

COUI = (Yill 1\ Cill) v (Yill 1\ aill 1\ XiII) v (Cill 1\ a ill 1\ XiII) 

The latches are used to align the data wavefront in order that the array 
computes the bit-level correlation of eqn. (2). 

N-1 

Yj = ~ai I\.Xj +i 
i=O 

j E {0,1,2, ... ,N -1} 

(2) 

The systolic array is based on a recursive definition of eqn. (2) that 
produces the structure shown in Fig. 3 (a). 

The complete recursive computation is shown in eqn. (3). 

[i][O] 

'll'j =0 

[i][k+1] [j][k] ( [[tl k]) 
'll'j = 'll'j + ail\. xj +i ·2 

k E {0,1,2, ... ,B-1} 

y)O) =0 

[i+1) [i) [i][B] 
Yj = Yj + 'll'j 

Yj = y)Nll 

j E {0,1,2, ... ,N -I} 

(3) 

We see that the implementation consists of repeating the same basic 
cell (a simple gated full adder) and constructing an array that observes 
the recursive decomposition of the original algorithm. In terms of 
silicon metrics: we have removed the bus structure by removing the 
flexibility of being able to program the architecture to implement 
different algorithms; we have reduced the parasitic capacitance 
connected to the data nets between modules; we have replaced the 
registers in the nsp core by distributed single-bit latches throughout 
the chip. The throughput rate is now dependent upon the rate at which 
a gated full adder can generate stable latched output bits. 
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Xi 

(a) 

(b) 

ao 

Fig. 3 Bit-level Systolic Correlator (a) 4x4 array (b) cell 
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This will be considerably greater than the throughput rate afforded by 
the DSP core. 

In reducing the capacitance of a single net (i.e. a bit line on one of the 
buses) we have also reduced the current 'spike' that will occur as the 
bus is charged. This current is Cbus ~>;" and can be many tens of 
milliamps for large capacitance loads. If we take the value of a lOOpF 
bus load and a lv/ns switching edge, the current is lOOmA. We will, of 
course, obtain large total charging current values for the systolic array, 
but there is a chance of skewing the clocks to even out the charging 
current. This need only be over a few nanoseconds; not sufficient to 
slow down the array because of timing races. 

ARCIllTECTURE AND ARITHMETIC 

The systolic correlator uses full adders implementing 2 's complement 
binary arithmetic. The bit-level decomposition of algorithms 
involving massive arithmetic computations, however, will change 
considerably based on the form of number representation and 
corresponding arithmetic operations required. 

We give the following two examples of architectures based on 
different arithmetic (and representation schemes). The first is an 
architecture using a form of redundant arithmetic; the second is an 
architecture using modulo arithmetic. 

DSP ALU Using Redundant Arithmetic 

As an example of the synergism associated with architectures and 
arithmetic, we briefly review the structure of a DSP ALU using 
redundant arithmetic [13]. In the application discussed here, the bit 
parallel systolic concept has been used to perform combined 
multiply-accumulate, divide and square root. The circuit is highly 
regular, requires only minimal control and can be reconfigured on 
each cycle. The execution time for each operation is the same. The 
combination of redundancy and pipelining results in a throughput 
independent of the wordsize of the array. 

The radix 2 SRT division method and the analogous square 
root algorithm have been used as the basis of the architecture. The 
use of a redundant number system limits the carry propagation to 
adjacent cells and allows most significant redundant digit (MSD) first 
computation. 
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ation S ID 

Fig. 4 DSP ALU using redundant arithmetic 

The restriction of the carry ripple to the adjacent pipelined stage is the 
key to the use of the architecture with pipelined feedback. If we use 
the binary arithmetic element of Fig. 3 feedback can only take place 
after the most significant bit (MSB) has been calculated, this implies a 
pipeline latency of B clock pulses, where B is the wordsize. Special 
algorithmic techniques can be used to allow a maximum throughput 
rate using standard pipelined binary arithmetic, e.g. by manipulating 
the transfer function for a recursive filter design [14], but the 
flexibility of MSB first calculations is very attractive. The architecture 
shown in Fig. 4 produces high throughput rates independent of the 
wordsize. Redundancy in the representation permits a degree of 
choice in selecting result digits and hence a degree of error is 
permitted in accumulating the results. The architecture is implemented 
by arrays of four types of adder cells, with control lines to allow the 
architecture to perform the different operations. The individual 
blocks used in the ALU are shown in Fig. 5 along with their arithmetic 
functions. The basic algorithm for multiply-accumulate, division and 
square root is as given by eqn. (4). 

-(~ x-mj _ 2 ) ifmult/acc 

Zj = 2Zj_1 - qj_P if division 

qj-l(Qj-2 +qj_1rj ) if square root 
(4) 

for j = 1,2,3, ... ,k 
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tout Sout 
[-1,0] [0.1] 

Cout 

[-1,0,1] 

if 

if 
S /DM= 1 

S/DM=O 

S-l,ollt 
[-1,0,1] 

to' .In 
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+SO,in+tO,in +t' +n 

Fig. 5a Cell types 1,1*,2, S, and M used in DSP ALU 
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Cin Sin tin 
2t :ut + w = p + Sin + tin 

b b[-I,O,I] 2tout + Sout = W+t~ 
S/DM S/DM 

Cout = Cin ~ut ( [0,1] 
U'1 

t bOb 
S/DM= 1 

Sout Cout [-1,0,1] p= 
S/DM= 0 b. C. [ -1,0] [0,1] In 

Fig. 5b Cell Type 3 used in DSP ALU 

The original implementation used logic gates to build the functional 
blocks, but, in a later section, we will use a form of latched dynamic 
logic to illustrate efficient techniques for pipelined circuit design in 
which the complexity of the switching functions does not depend 
directly on Boolean decompositions into logic gates. 

FINITE RING INNER PRODUCT STRUCTURES 

The previous section illustrated that the number representation and 
corresponding arithmetic can improve the architecture of the 
pipelined DSP block. The most beneficial structural representation for 
feed forward calculations (e.g. inner product computations) can be 
obtained by mapping the original integer calculations to a direct 
product ring where calculations are carried out by parallel and 
completely independent small dynamic range ALUs. There is a 
conversion overhead associated with this technique, but the resulting 
main computational structure is benign as far as testing, clocking and 
fault detection are concerned. 

Number theoretic architectures have traditionally been based on the 
Residue Number System (RNS), but the disadvantages of RNS 
techniques (non-homogeneous data conversion architectures) 
outweigh the advantages of carry free computation. A recently 
introduced approach, based on a polynomial ring mapping strategy, 
removes some of the RNS mapping problems [15]; however, unlike 
the algebraic integer mapping procedure [16], this new technique 
allows simple, error-free, mapping of incoming integer streams, and 
homogeneous conversion architectures at the output. The main body 
of the computation is performed in identically replicated linear bit
level pipelines; this has important ramifications in terms of fault 
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tolerance and testability when implemented in dense technologies, 
such as WSI and ULSI. 

RNS Systems 

In RNS systems we deal with rings, or fields, that are used for the 
actual implementation and rings that are isomorphic to direct products 
of implementation rings or extensions of them. A given digital signal 
processing algorithm is mapped from real or complex integer 
arithmetic to the implementation rings, the computation is carried out 
there, and the result is then mapped back to obtain the final answer. 

Let m be a positive integer. We denote by R(m) the ring of integers 
modulo m, i.e. 

R(m) = {S:E9""®,,,}; S= {O,l, .. ,m-l} (5) 

Where we use the notation a$", b and a®", b to imply the residue 
reduction of a and b modulo m within addition and multiplication. 
We can extend the notion of addition and multiplication from the 
elements of S to all of the integers. If Rl and R2 are any two rings 
then we can define the cross-product ring Rl x R2 as the set of pairs 
(Sl'S2)ESl xS2' with addition and multiplication defined component 
wise, i.e. by 

(al'~)E9RIX~ (bl'b2 ) = (lIt E9 R1 bl'~ E9 R2 b2 ) 

(lIt'~)®RIX~ (bl'b2 ) = (lIt ®Rt bl'~ ®R2 b2 ) 

(6) 

The isomorphism (=) between R(M) and the direct product of 
{R(mk)} means that calculations over R(M) can be effectively carried 
out over each R( mk ), independently and in parallel. A final mapping 
to R(M) is performed at the end of a chain of calculations. We have 
therefore broken down a calculation set in a large dynamic range, M, 
to a set of L calculations set in small dynamic ranges given by the 
{mk }. This is the main advantage of using the RNS over a 
conventional weighted value numbering system (e.g. binary). 

The final mapping is found from the CRT: 

L 

X = L {mk ®M [Xk ® .... (mk)-l]) 
k=1 M 

(7) 
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with ml< = MimI<, X E R(M) , xI< E R( ml<) and (. r1 the multiplicative 
inverse operator. We have also used the notation l:M to indicate 
summation over the ring R(M). 

Polynomial rings and quotient rings 

Welet R[X] denote the ring of polynomials in the indeterminate: 

X:R[X]={f,al<xl<:al< ER,ns.o} 
1<=0 

(8) 

If X1'X2 ' ••• XS are indeterminates then we define the ring 
R[X1,X2 ,oo.,XS ] to be the ring of multivariate polynomials in the 
indeterminates. We use polynomial rings, where the base ring R, is a 
modular ring, R(M), and we write RM [Xp X2 , ••• ,Xs] in place of 
R(M)[X1,X2 , ••• ,Xs]. 

For a given polynomial g(X) E R{X} we consider the set (g(X» of all 
(polynomial) multiples of g(X). This set is called the 'ideal' 
generated by the polynomial g(X) in the ring R[X]. The quotient 
ring R[XVg(X) is then defined to consist of all elements of the form 
j(X)+(g(X»), with j(X)e R[X]. The more usual way of considering 
the quotient ring is to consider sums and products of polynomials 
reduced according to the equation g(X) = 0, that is, to consider the 
remainder after division by g(X). 

We apply polynomial ring mapping by letting indeterminates 
represent various powers of 2 in the binary representation of the data 
samples. This allows the data to be expressed as polynomials with 
small coefficients. These coefficients are then mapped to a direct 
product ring consisting of many copies of ZM (the ring of integers 
modulo m) as factors. The direct product repeats the factor ZM 
many times, so that the same prime divisors of M are used repeatedly, 
thus obviating the need for additional, larger primes. 

In order to be able to perform useful computations, the modulus, M, 
has to be able to contain the coefficients of result polynomials. 
Multiplication will be the major problem in coefficient growth, and we 
assume that the algorithm is arranged so that only single cascades of 
multipliers are used prior to the application of mapping circuitry. We 
can further decompose M. to allow the use of very small rings, by the 
application of a RNS. The mathematical derivations are somewhat 
tedious, and the reader is referred to a more complete description in 
[ 17] 
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Fig. 6 Mapping procedure 

The elements of the mapping procedure are shown in Fig. 6; the 
method has the following advantages: 

1) There are no quantization problems. The data, either real or 
complex, are assumed to be of a given fixed bit length. No 
approximations or scaling are used in encoding the data; this is a 
major advantage compared to the algebraic integer approach [16]. 

2) The polynomials used are of a general nature, so that no 
restrictions are placed on the prime divisors of the moduli, except 
in the case of a QRNS representation of complex data [18] in 
which case the condition is the usual one of p == l(mod4) for 
prime divisors p of the modulus M. 

3) The same small moduli can be used many times, which allows 
VLSI iJIlplementations of systems which can process data of a 
large bit length, using direct products of many copies of modular 
rings with small moduli. 

4) Encoding is a simple matter of diverting the bits of the input data 
to the proper channels. Decoding is only complicated insofar as 
the Chinese Remainder Theorem is used, and even then only for a 
limited number of small moduli. Scaling, if used in decoding, is 
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simplified by the ring structures used; certain monomials can be 
ignored as they represent insignificant digits. 

As an example of the mapping let us write complex input integers as 
polynomials in the variables W, X, Y and Z, where W = 2, X = 4, 
Y = 16, and Z = 256. With this notation, any positive integer < 216 can 
be written in a unique fashion as a sum: 

(9) 

with the coefficients equal to 0 or 1. Similarly, any negative integer 
> 216 can be written in the same form with coefficients 0 or -1 (note 
that the use of 0 and ±1 implies a signed bit representation of the 
coefficients). We will use a modulus M = 105, and introduce a further 
decomposition using an RNS moduli set {3,5,7}. In order to represent 
the complex operator, j we add an additional indeterminate, T; we 
use the polynomial T(T2 + 1) = 0 to define the mapping [19]. The 
amazing feature about this mapping is that the complex operator and 
the bit operators are interchangeable, allowing a variety of binary 
representations of complex numbers to be simply mapped to the 
direct product ring. This map is performed by evaluating each of the 
five variables W, X, Y, Z, and T at each of the three roots 0, +1 and 
-1. This results in 35 = 243 results for each of the moduli 3, 5, and 7. 
The map (a tensor product) is very simple, consisting of nothing more 
difficult than sign changes and additions. 

A simplified mapping structure is shown in Fig. 7 for 3 indeterminates 
(one for the complex operator). The mapping blocks simply consist 
of modulo adder/subtractors with constant multipliers. The arithmetic 
is computed modulo 3, 5 or 7 so that the complexity of the block is 
related to 6 input bits and 3 output bits. This, in fact, is the maximum 
complexity of any block in the system including the hardware for 
computing the appropriate DSP algorithm. 

The DSP algorithm is inserted into the independent streams shown by 
the dotted horizontal line in Fig. 7. 

A 'Fast Algorithm' Example 

The technique requires an inverse mapping each time a scaling 
operation is required, which limits its usefulness to feedforward 
algorithms with sparse scaling requirements. 
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Fig. 7 Polynomial ring mapping structure 

Scaling is required if the dynamic range of the integer computation is 
likely to be overflowed, and this occurs for cascades of multiplication 
operations. We normally look for inner product type computations, 
where a single cascade multiplication is embedded in many addition 
operations. Typical algorithms that possess this property are FIR 
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filters, direct fonn transforms (not, in general, 'fast algorithms') and 
matrix multiplications. In some circumstances it is possible to produce 
'fast' architectures that still allow a single cascade multiplication 
structure. An example of a 15 sample Discrete Cosine Transform that 
supports such a single multiplication cascade is shown in Fig. 8. The 
strip in the centre contains the multiplications, all other operations 
being additions or subtractions [20]. The multiplications are given in 
Table 1, where ci = cosU / 30). 

x7 

x6 

xS 

x4 

X3 

x2 

xl 
xO 

xl4 

x13 

xl2 
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Fig. 8 Structure of 15 sample Dcr with a single multiplication 
cascade 

~ =1 m 2 = 1.875 m3 = 0.75(c6 +CI2 ) 

m 4 = -1.25 ms = 0.5(c4 + CI4 - c2 - cg ) m6 =-1.5 

= -O.5(c6 + c12 ) 1 m9 = 0.5(c2 + cg ) 
mg = --(c4 + CI4 +c2 + cg ) 

2 

tl =-c3 1 t3 = C3 +c9 
t2 = -(cI + cll + c7 - cl3 ) 

4 

t4 =-cs t5 = -1.5(c3 + c9 ) t6 = c3 - c9 

= 1.5(c9 -c3) tg = 1. 25cs t9 = 1.5c3 

Table 1 Multiplier Coefficients for Fig. 8 

This structure is now replicated at every parallel data stream on Fig. 7 
each computations over a 3-bit finite ring using a maximum 
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complexity block of 6-bit input and 3-bit output. The structure of the 
parallel DCT computation is shown in Fig. 9. The rectangular blocks 
are the input and output mapping arrays,. 

-

= ::---~ 

-~:: =- .. 
-----------

~-~ .. =-
Fig. 9 Parallel ocr implementation 

The other example of the use of 'fast' algorithms is in the 
implementation of number theoretic transforms (NTIs) [21] where 
the number range growth is only based on the properties of the 
convolution of the two sequences, not on the way in which the NTI is 
computed. 

Notes on Implementation 

It is important to reflect on the complexity of logic gate 
implementation of general modulo computations versus binary, or 
some modification, such as redundant arithmetic. Binary weighted 
magnitude implementations tend to decompose quite readily to full 
adders or some modification to the full adder structure. Residue 
computations do not naturally decompose this way, and most work on 
RNS implementation, for example, has concentrated on the use of 
look-up tables for the switching functions, where there is no need for 
explicit logic gate decomposisitions [22]. We will follow this 
procedure, but also use the results we obtain for the binary type 
structures discussed earlier. 
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BUILDING BLOCKS 

The key to efficient implementation of bit-level systolic arrays, is in 
the minimization of the logic/latch structure used for each processor. 
Early implementations of bit-level systolic arrays used standard static 
CMOS logic with static D-Iatches for the pipeline storage [23]. This is 
not an efficient method for designing arrays in which there may be a 
ratio as low as 1:3 between latches and logic gates. The switching 
blocks (represented by the small number of logic gates connected 
between latches) may be realized by dynamic trees embedded in a 
dynamic logic structure such as domino [24] or cascode voltage 
switched logic [25] and the latches can also use dynamic logic 
principles. 

The difference between static and dynamic logic is illustrated in Fig. 
10 for a 2-input NAND gate. The static gate uses complementary p
channel and n-channel blocks to ensure that a conducting path, either 
to ground or V DD' exists for valid input logic states. The dynamic gate 
uses the parasitic capacitance at the output node to temporarily store a 
pre-charge (high logic level for ¢ = Ov); when the gate evaluates 
(¢ = +5v) this charge either remains high (' I' output) or is 
discharged ('0' output) depending upon the state of the middle two 
n-channel transistors. 

VDD 

C 
C ,--.. 

A , 
A ~ 

.... 
B 

B 

Static Logic Dynamic Logic 

Fig. 10 A 2-input NAND gate 
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The advantage with dynamic logic is that quite complex gates can be 
built, using only n-channel blocks, with much faster evaluation times 
than equivalent static blocks. It is not unusual to see complete full 
adders, for example, implemented as a single complex n-channel 
block in dynamic logic, where an equivalent static logic 
implementation is normally decomposed into cascades of simpler 
logic gates. The disadvantages with dynamic logic are the temporary 
nature of the logic output, the need for a clock to time the pre-charge 
and evaluate phases (static logic behaves like the ideal combinational 
gate), and circuit theoretical problems associated with charge sharing 
between nodes during evaluation, and potential race conditions 
between cascades of dynamic gates [26]. 

The concept of temporary charge storage is directly applicable to 
pipelined systems where simple two-phase gates provide the latching 
and isolation functions required. Fig. 11 shows a very simple 
implementation of this function using two n-channel transistors and a 
non-overlapping two-phase clock, the temporary charge storage is on 
the parasitic capacitance present on the 'wire' connecting the two 
transistors .. 

~ 'i" 

-1 
-L-

I I 
1"'7'" 

• 
• -==-

I 
Fig. 11 Simple Master/Slave dynamic pipeline latch 

Symmetrical drive capabilities can be obtained, in CMOS, by using 
transmission gates (parallel nand p-channel transistors) with 
complementary gate drive signals; the increase in hardware is 
considerable, though still less than an equivalent static gate 
implementation. There is no problem with the temporary nature of the 
latch storage, because data are continually flowing through the latch at 
cycle times many orders of magnitude lower than the charge storage 
time. 
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Recently published work has shown that it is possible to obtain 
extremely high pipeline rates (over 200MHz, for example, in a mature 
3J.L CMOS technology) by combining simple logic blocks with single 
phase clocked dynamic circuitry [3, 7, 27]. The trade-off in this 
approach is throughput rate versus latency (number of pipeline stages 
required). The ideal use for very high speed pipelines is in locally 
pipelined arithmetic units, where the local clock rate is much higher 
than the input data rate; bit-serial implementations are ideal target 
architectures. In the case of bit-level systolic arrays, the clock rate is 
the same as the rate of the data stream, and we can therefore develop a 
circuit approach where there is a close match between the maximum 
throughput of the circuitry and the data stream rate. This is a 
particularly appropriate approach if a good hardware/speed trade-off 
is the result. We now discuss specific dynamic logic building blocks 
that are inherently suited to the implementation of bit-level systolic 
arrays, and which allow general use over the diverse example areas 
presented so far. 

PIPELINED SWITCIDNG TREES 

We embed a minimized complex NFET logic block (we will refer to 
this as a switching tree) in a TSPC master/slave latch, as shown in Fig. 
12. 

Switching 
Tree 

vdd 

Fig. 12 Embedded tree 
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Note that the p-channel logic block (highlighted) is restricted to a 
single PFET (inverter), operating as a slave latch. Our approach is to 
build the logic for each stage entirely within the NFET block; this 
provides the most area efficient implementation of a given logic 
function, and allows the use of an asymmetrical clock. 

The tree is designed as an n-dimensional ROM (binary tree) where n 
is the number of input variables, as shown in Fig. 13. The notation 
represents transistors whose gates are driven by the true logic input as 
arcs,' ; the other arc, /, represents transistors whose gates are driven 
by the complement of the logic input. By removing selected 
transistors from the bottom of the tree, we can implement any 
arbitrary truth table. Viewing the tree in this way allows tree height 
reduction using higher order decoders rather than the single inverter 
decoders required for the n-dimensional ROM. 

o 1 2 

Top 

3 - - - £-4 
Base 

n n .Jl 
2-32-2 :l-l 

Fig. 13 A Full Binary Tree 

A full binary tree possesses interesting qualities as far as a series chain 
discharge block in dynamic logic is concerned. In the full tree we see 
that, for stable logic inputs, only a single series path connects the top 
node to one of the bottom nodes, and the capacitance at every node in 
each of the possible series paths is only 3 source/drain capacitances in 
parallel. 

The minimization technique is not based on Boolean algebraic 
concepts, as with most reported dynamic logic designs, e.g. [25], but 
rather on the application of two graph reduction rules [8]. This 
approach is useful in that it allows a well established relationship 
between reduced tree structure and silicon layout that is essential for 
both hand custom layout and module generation approaches for 
complex multiple output trees. It also allows efficient circuit 
decomposition based on treating the block as a ROM, that may be 
hidden with a pure Boolean algebraic approach. 
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GRAPH BASED REDUCTION 

In order to present the two simple rules used in the minimization 
procedure, the following definitions are given, based on Fig. 13: 

A tree represented by a graph can be denoted as, G = {X, V}, where X 
is a set of edges (n-channel transistors) {Xi)' and V is the vertex set 
of nodes {vi,i}' An edge x iJ ' consists of elements (ct,Vt,I)' where i 
and k are tree levels, j E [0,2,+1 -1], IE [0,2 t -1], and connection type 
ctE{T,F,W}. The inputs to the tree are gi E{O,I}. If gi =1, then the 
path takes edge T if it is present. If gi = 0, the path takes edge F if it 
is present. W represents an arc which is a wire, or link, connection, 
and is only present following the successful application of a reduction 
rule. 

A path, P(i,n,(t,I)' is the connection from node vi,i to node Vt,l' 
constructed by edges. A full path connects node vo,o to node v n,l' 
where n is the height of the tree. A switching tree is the reduction of 
a unique set of full paths that describe a logical function. A tree is 
characterized by two sets of full paths, a true set in which an edge T 
or F is present at the n level, and a complement set in which an edge 
T or F is removed at the nth level. A truth table is mapped onto a 
full tree by removing a sub-set of edges E {x,,),j E [0,2,,+1 -1], from a 
full tree based on the set of zeros in the truth table. 

Graph Reduction Rules 

The following two rules are used in the graph reduction technique [8]. 

Rule: 1 Merging of shared sub-trees 

If paths from vi,i to V",I and from Vi,t to v",m' where j, k E [0, zi -1], 
l,m E [0,2" -1], contain an identical set of edges, starting at a node at 
level p, those nodes where the matching occurs in both sequences can 
be merged. Furthermore, if k = j, and i - P = 1, then the edges from 
node vi,i to nodes v p,l and v p,m can be replaced by a link edge. 

Rule:2 Deletion of Common Edges 

Consider a set of edge paths, Xl' connecting a node vi,i with a node at 
level n , and a set of edge paths, X2, also connecting the node vi,i with 
a node at level n. Path Xl follows the T edge from node vi,i' and 
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path X2 follows the F, edge from node vj,i' If X2 covers Xl' then 
the first edge in Xl has ct = W. 

Rule 1 provides for the greatest reduction in the number of nodes by 
merging common subtrees. Rule 2 replaces transistor links between 
nodes with wire links. When merging occurs, however, accidental paths 
through the tree may be created which can produce false results. We 
call these accidental paths sneak paths after the same phenomenon in 
switch matrices. Rule 2 provides an important reduction mechanism, 
when the truth table contains don't care states. These states are set to 
either a 1 or ° to facilitate tree decomposition. Rule 2 sets these states 
to force one half of a subtree to be a subset of the other half so that 
the transistor link leading to the subset may be replaced by a wire 
link. States in the covering half of the subtree that match those in the 
subset will always be taken care of by the subset. Thus, their effect on 
the output is unimportant. This may allow the use of Rule 1 in the 
lower portions of the switching tree (below the common edge). 

Example Results 

As an example of the use of the graph reduction technique, consider 
constructing trees for a 4-bit binary adder: 

3 

4 '" j z = X + Y +C = 2 C4 + £..2 Sj where X,Y E {O,I,2, ... ,15} 
i=O 

and C E {O, I}. The starting point is a set of lists that define the truth 
table for each of the 5 output bits based on the 9 input bits. We 
therefore produce 5 binary trees, each of height 9, and each 
programmed from a truth table with 512 states for the output bit. We 
now apply the two reduction rules and finally produce the trees shown 
in Fig. 14. Only the S3 and C4 trees are merged, even though the 
other trees were merged by the software; this was a final decision 
based on layout considerations. 

There are some points to note in this design: 

1 Although the number of inputs is 9, the maximum tree height, 
because of the decomposition properties of the adder structure, 
has been reduced to 6. 

2 The explicit wire, W, connection type is hidden because the tree 
heights have been compressed by assigning different input 
variables to the same row. 



www.manaraa.com

344 

Fig. 14 Switching trees for a 4-bit adder 
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3 The ordering of the variables in the original tree structure can 
have an affect on the reduction in tenns of numbers of transistors 
and locality of interconnections. For multiple output trees that are 
to be merged (as in the original specifications for this example) 
the ordering should be consistent for all of the individual trees, 
and this constraint tends to minimize the effect of variable 
ordering over the entire multiple tree reduction. For this example, 
the ordering is {X3'Y3,X2'Y2'XI'YI'Xo,Yo,co}. 

4 The maximum net capacitance has been increased from 3, for the 
original binary tree, to 7 for the net that merges the C4 and S3 
trees; however, other nets have reduced capacitance. The gate load 
is shown in Table 2. The general trend is an increase in load as we 
move down the tree but the gate load of the original binary tree is 
reduced by orders of magnitude at the bottom. 

Variable True Comp-
lement 

x3 3 1 

Y3 4 2 

x2 3 3 

Y2 4 4 

Xl 5 5 

YI 6 6 

Xo 4 4 

YO 8 8 

Co 7 7 

Table 2 Gate load for the 4-bit Adder 

5 It is tempting to apply standard Boolean decomposition theory to 
the problem, but this misses the point that graph based reduction 
allows a direct link between the original problem description and 
the implementation on silicon. For this particular example, the 
movement of carries between single bit (full) adders is not a 
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consideration, whereas typical Boolean decompositions of multi
bit adders are centred on the carry manipulation problem. 

CIRCUIT CONSIDERATIONS 

Worst case test 

In order to invoke worst case conditions, we drive single tree paths to 
both provide maximum charge sharing effects and maximum pull 
down delay. A typical test circuit is shown in Fig. 15 for a full 4-high 
binary tree. Worst case node capacitance loads are used for specific 
designs. 

VDD 

Cloadl 
.... ----_---t----1~Eval 

Fig. 15 Worst Case Test Circuit 

Since we assume that a switching tree block is always driven from the 
output of a TSPC latch (pipelined system), the well known worst case 
charge sharing condition will not occur (where evaluation takes place 
immediately after a complete tree discharge). Inputs can only change 
state at the beginning of the precharge cycle, and must remain 
constant during both the precharge and evaluate cycle. 
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Test results for a full binary tree path, for our target 31l DLM CMOS 
process, indicate that a tree height of 6 yields acceptable charge 
sharing droop with pull-down times in the region of 20ns. Fig. 16 
shows worst case results for a charge share cycle followed by a pull
down cycle for a 6-high tree. 

O.ov ~--~----~----~--~----~--~~--~----~ 
20nS 30nS 40nS sOns 60nS 70nS 80nS 90nS lOOnS 

Fig. 16 Worst case test results for a full binary tree path 

The arrows on Fig. 16 indicate a movement of a 7 transistor load 
(which corresponds to the maximum drain load experienced by the 4-
bit adder example) towards the bottom of the tree; we see that large 
loads at the bottom of the tree have the worst case effect. 

Reduction of Charge Sharing 

We can use the standard technique of internal tree p-channel pull-up 
transistors to reduce the charge sharing effect. In the case of pipelined 
blocks, however, a single pull-up is often sufficient, and since we are 
pulling up an internal node directly, we can trade a reduction in 
pre charge time for an increase in evaluate time, without reducing the 
throughput rate of the pipeline. Because we are only using a single 
pFET inverter for the p-Iogic block of the TSPC latch, we have the 
flexibility of adjusting the precharge/evaluate duty cycle without 
being concerned about the effect on the pFET slave latch; i.e. the 
timing limitations are governed by the nFET latch circuitry. 

Fig. 17 shows the effect of increasing the evaluate/precharge duty 
cycle and applying a small pull-up to either node 5 or 4. In the case 
of no pull-up pFET, the tree has a reduced precharge of internal node 
capacitance, and so experiences a large charge sharing effect. With 
even a small pull-up pFET (61l width) there is a sufficient precharge 
of the large capacitance node at drain 5 to essentially remove any 
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effect of charge sharing. The increased evaluation time ensures that 
the worst case pull down falls well below the TSPC latch input signal 
noise margin. A single pull-up transistor will also be effective if it is 
within one, or two, transistors of the large capacitance node. The 
constant voltage input effect is clear in the almost identical waveform 
based on a pull-up at node 4 (a much more lightly loaded node). 

6V~-----+------~------+-----~~----~ 
DrainS 

4VH-----~------_+~----~~----~+_----~ 

3V~----~r-----~------~~----~----~ 

2V~_,~_+------~----~~~~--~----~ 

lV~~--~------~--~~--~~_H----~ 

o.ov 
O.OS 20llS 40llS 60nS 80nS 

Fig. 17 IncreaSing evaluate/precharge ratio 

lOOnS 

Using these techniques we can guarantee almost constant pull-down 
delay characteristics of pipelined blocks by restricting logic blocks to 
tree heights, nmax ' and thus maintain maximum performance of the 
pipelined arithmetic system. We maintain constant block height by 
either decomposing the computational function, at the functional 
level, into such blocks, or by applying tree height reduction steps 
directly to a minimized treeflatch structure, where n> nmax • 

Reduction of Tree Height 

We can reduce tree height by pulling out input decoders. The 
decoders are built using domino logic by simply removing part of the 
original binary tree, inverting the removed section, and cascading with 
the remaining tree structure. The Domino decoders use the same 
single clock signal as the TSPC latch. We can also separate the lower 
parts of the trees and build the decoders in the p-channel part of the 
master/slave latch. 

Fig. 18 demonstrates pulling out a 2:4 decoder from the top of the 
S3 / C4 tree in our example 4-bit adder. Note that although the single 
decoder can be shared between the two trees, the C4 tree only needs to 
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use the Z3 decoder output since the other transistors are already at a 
single transistor height. 

Fig. 18 Pulling out a 2:4 decoder at the top of the S3 / C4 tree 

Decreasing Pull-Down Time by Sizing 

A significant reduction in pull-down delay can be obtained by sizing 
the transistors [24]. This is a complex issue when looking at the 
interaction between pull-down delay and charge sharing. We can use 
an approximate analytical technique [28] that obtains very close to 
optimal results while allowing both on-the-fly calculations and 
algebraic manipulations for module generator applications. 

In this technique, the discharge delay of the evaluation node E is 
given by Elmore [29]; 

N N N 

TD = LRiLCj = LTDi (10) 
i=O j=i i=O 

The analytical technique uses an observation that, for close to 
optimum results, the time constants of eqn. (10) are almost equal: 

(11) 

A typical result of the optimum sizing, using an iterative algorithm, 
versus the closed form technique, is shown in Fig. 19 for a 6-high tree 
(with ground switch). 

Using the optimum sizing profile in the previous test tree (with 
appropriately sized load transistors) and increasing the width of the 
precharge and pull-up transistors to twice and four times their 
previous size, we obtain the results shown in Fig. 20. 
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Fig. 19 NFET Sizing Profile 

80 

In this example the pull down time has been decreased by about a 
factor of 2, measured from the start of the evaluate phase to the Iv 
level. There is, however, about a 4 times increase in power dissipation 
measured over the two test clock cycles. This will increase to about 8 
times if the clock speed is doubled to take advantage of the pull-down 
decrease. Clearly the option to size the transistor profile will have to 
be considered in light of the data stream throughput requirements, 
since the tradeoffs are quite severe. 

6V 

5V 

4V 

3V 

2V 

IV 

o.OV 
O.OS 

,., ... 1-
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Fig. 20 Comparison between sized and minimum profile 
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FABRICA TION RESULTS 

The 4-Bit pipelined adder cell was fabricated on a test chip using a 
very mature 3J.l DLM p-well CMOS technology [30]; all transistors in 
the NFET block were 5.4J.l wide with a channel length of 3J.l. In order 
to find worst case performance limits, we did not use either decoder 
tree height reduction, or internal node pull-up pFETs. The duty cycle 
between evaluate and precharge was 1: 1. The cell (see the micrograph 
in Fig. 21) was one of five test cells on the chip. 

Fig. 21 Photomicrograph of 4-bit adder test cell 

The cell reached a throughput rate of 40 Mhz at room temperature. 
The rate dropped to about 30MHz when the chip was heated with a 
dryer heat source. SPICE simulation results of the supply rail current 
demand, at an operating speed of 40 Mhz, show a peak dynamic 
current of approximately 6 milliamps with an average current demand 
of approximately 1 milliamp, leading to an average power dissipation 
of 5 mW. It is interesting that this power consumption is slightly less 
than the power requirement of the pipelined gated full adder, 
described earlier, built using static/transmission gate logic with 
dynamic latches. The 4-bit adder represents at least three times the 
switching complexity of the gated full adder, and gives a 
demonstration of the low power operation of reasonably high 
performance circuitry using the switching trees approach. 

FURTHER EXAMPLES OF SWITCIllNG TREE BLOCKS 

In this section we use the Switching Tree approach for the other two 
architectural examples presented earlier. 
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Redundant Arithmetic Block 

As an example of the cascode minimization of a complex pipelined 
switching block, consider the construction of the cell in Fig. 5b. The 
merged trees are shown in Fig. 22. 

Fig. 22 Cell 3 Switching Tree Implementation for DSP ALU 

In this case the 8-bit input tree reduces to a maximum height of 5. 
The maximum drain load is 5 drains, and the block pipelines at over 
30MHz with no pull-up transistors. The charge sharing is quite 
acceptable down to a precharge pulse width of IOns. 

Modulo Arithmetic Block 

Here we consider a Mod-7 multiplier as representative of the 
maximum complexity that will be required by the small ring 
polynomial mapping architecture discussed earlier. 

The minimized tree is shown in Fig. 23. The order of the inputs (from 
the top) are {B2' B1' Az, ~,Ao, Bo}. This ordering was determined to 
be the best, based on a limited search, for minimizing interconnection 
lengths with a close to optimum reduction in number of transistors. 
We will see, in the next section, that minimizing the number of 
transistors is not necessarily the best criterion for optimization. The 
don't care states resulting from the fact that there are only 7 valid 
states in an 8 state system (3-bits), are used to help reduce the tree 
structure and to provide, as far as possible, local interconnections 
rather than cross connections. The merging of the three original trees 
is quite evident in Fig. 23. The complexity of the multiplication 
operation is seen in the preservation of the original tree structure at 
the top of the trees (this is not in evidence, for example, in Fig. 22). 
This minimized tree structure is ideal for the pulling out of decoders 
technique mentioned earlier. 
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" WireEdge " TrueEdge " FalseEdge 

Fig. 23 Minimized tree for Mod 7 multiplication 

SWITCHING TREE MODULE GENERATOR 

In this section we discuss a module generator suitable for on-the-fly 
cell generation for arbitrary switching tree designs. This is essential 
for a design automation procedure, since it is impractical to pre
design a cell library based on the wide variety of truth table 
requirements that may have to be met in a typical arithmetic 
computational setting. 

The following approach is very similar to the gate matrix or PLA 
concept, where a two dimensional array of transistors is generated 
based on a transistor network mapped from a minimized Boolean 
function. In our case the network is a direct mapping from a 
minimized binary tree. In order to illustrate the procedure we have 
developed, we will use the previous example of Mod 7 multiplication. 

Placement Mapping 

Our approach to the module generator is a direct mapping of tree 
primitives to layout primitives, using a matrix layout approach. The 
matrix of primitives for the Mod 7 multiplier is shown in Fig. 24. The 
levels corresponds to rows on the tree, and each level has two rows; 
one for the True edges and the other for the False edges. The position 
of the rows alternates between adjacent levels; this is to accommodate 
the inverters that are used to drive the complement gate signals. 

The mapping of primitives to the matrix is performed by either filling, 
or leaving empty, the table positions shown in Fig. 24. The Wire and 
transistor primitives are direct mappings from the switching tree, the 
shorting primitives are used to connect gate signals, propagated on 
metal 2 lines to polysilicon transistor gate lines. 
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The metal 2 and polysilicon lines run horizontally across each row in 
the matrix with the metal 2 lines directly on top of the polysilicon 
lines. By shorting the metal 2 to the polysilicon at several places 
across the row (ideally near a transistor gate) we can eliminate the time 
constants associated with the large resistivity of polysilicon and 
transistor gate capacitances. We use space in the table to place the 
shorting primitives. Because these primitives are offset from the centre 
of the metal 2/polysilicon lines, they have two possible vertical 
directions; both directions have been used in Fig. 24. 

~ I } 
i! ~ ~ 

~ ~ I ~ ~ m I/' m 
i m i.oo' .0 

m m ~ ~ 15 

vel 1 

vel 2 

vel 3 

I I ILe 

I' !J 

vel 4 

I 
I~ 

lLe 

r, ~ 
(,I I I ILe 

1 

vel 5 

vel 6 .. 
IJI Shorting Primitive I - Wire Primitives ~ Transistor Primitive 

Fig. 24 Table of primitives for the Mod 7 multiplier tree 

Placement AI~orithm The algorithm used to map the tree edges to 
the matrix primitives is given below: 

1) Start at the top of the right hand tree; and map to the right most 
column in the matrix. 

2) Move towards the bottom of the tree, taking either right hand 
edges or single merged edges, mapping the edges (vertical wire 
links or transistors) to matrix primitives in the column. Place 
horizontal wire matrix primitives if a previously mapped edge (in 
the right hand adjacent matrix column) is connected to the 
currently mapped edge. The path will terminate when either a left 
hand link is reached, or when the bottom of the tree is reached. 
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3) Move to the left until the first unplaced left hand edge, at any 
vertical position, is reached. Terminate the algorithm if all edges 
have been placed. 

4) Repeat from 2), mapping to a new column to the left of the 
previous column. 

At the termination of the algorithm, the matrix is examined for 
suitable placement of shorting primitives. This is a somewhat heuristic 
procedure since there is a trade-off between reducing the resistance of 
the signal path to each transistor gate, and the extra capacitance load 
of the shorting primitive. There is often limited space for the shorting 
primitives, particularly near the dense central rows. We can see, from 
Fig. 24., that shorting primitives have been able to be placed within a 
short distance of every two or three transistors on a row; this will 
change with the particular function being implemented. 

Observations 

We see that the area required by the tree edge placement is given by: 

(12) 

where: 

cl> is the number of input lines to the switching tree (6 in the Mod 7 
multiplier example) 

H Row is the height of each row 

E> is the number of separate columns required in the placement 
mapping 

W Col is the width of each column 

Notably absent from eqn. (12) is the number of transistors. Although 
there will be a correlation between minimizing transistors and 
minimizing E>., the only direct requirement for minimizing transistors 
is to reduce the number of series transistors in the critical path of the 
tree (the path that has the maximum number of transistors between the 
ground plane and the evaluation node). In the Mod 7 multiplier 
example, the critical path is cl>. 



www.manaraa.com

356 

Floor Plan and Layout 

Fig. 25 shows the floor plan and final layout of the Mod 7 multiplier, 
using the 3J.l DLM p-well CMOS process [30]. The transistor block 
contains the matrix of primitives mapped from the switching tree, and 
also the metal2/polysilicon signal wires. Note that the figures have 
been rotated by 90°. The inverters are formed by p-channel and n
channel strips, separated by the tree matrix. The matrix also includes 
the ground switch transistors, and the input clock signal to the switches 
is buffered by an inverter at the end of the inverter strip. The latch 
primitives are full custom layouts, and the clock signal to the latches is 
also buffered at the bottom of the latch column. 

p-channel inverter 
strip 

D-Latch 

Transistor Block 
D-Latch 

D-Latch 

n-channel inverter 
strip Buffer 

Fig. 25 Floor plan and layout for the Mod 7 multiplier 

The transistor array governs the height of this particular example cell, 
but often the latches control the size, particularly for smaller numbers 
of inputs, or when there is a greater decomposition of the switching 
function (e.g. multi-bit binary adders). For such a cell, the area is now 
controlled only by the number of input bits (width) and number of 
output bits (height). For these low area switching functions, generating 
an optimal solution to the tree minimization is often not important; 
what is more important is control over cross connections (the simple 
algorithm in the previous section only works with a planar tree 
mapping) and it is a better choice to increase <I> if a planar tree is the 
result. 
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Comparison Study 

Based on the statement, in the previous section, concerning layout area 
that is independent of switching function, it is useful to compare the 
automatic layout versus full custom hand layout, and also to compare 
the Switching Tree approach to alternative switching function 
implementations. We will use the Mod 7 multiplier as the example for 
layout comparison, and we choose a TSPC PLA design as the 
comparison architecture. The 3f..l CMOS fabrication process is used 
for all comparison designs. 

Hand Layout The approach for the hand layout is to map the trees 
individually and to surround the resulting latched trees with the 
appropriate buffers. The transistor sizes for the trees are based on the 
minimum width of the drain/source area afforded by the design rules. 
The channel widths are also set at this value (5.4f..l). The floor plan is 
shown in Fig. 26. 

: 

Fig. 26 Floor Plan for the Hand-Layout Design 

TSPC PLA Design The PLA design uses the same TSPC latch 
structure as the switching tree approach. Because the PLA contains 
separate AND and OR planes, these have been incorporated into the n
channel block and p-channel block of the latch. This provides the 
ability to pipeline at the rate of the slowest of either block, rather than 
requiring a single evaluation of the complete structure or separating 
the planes into different latches. Channel widths are the same as for 
the Switching Tree designs. The floor plan is shown in Fig. 27 along 
with the multiplier core layout. 
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The truth table for the Mod 7 multiplier does not decompose 
sufficiently to allow folding of the core, as seen in Fig. 27. 

Area Comparison The 3 designs are compared in Fig. 28. It is 
clear that the switching tree design has much lower area than the 
equivalent PLA design, but more surprising is the fact that the 
automatically generated tree design has lower area than the hand 
layout. Clearly the mapping of merged trees to a matrix placement is 
very efficient. 

MOD7MUL T ....cORE 

Fig. 27 PLA design: Floor plan and Mod 7 multiplier core 

Fig. 28. Area comparison of the three designs 

A more useful comparison is between the core areas of the three 
designs, since this will eliminate differences in the design of support 
circuitry (buffers, latches etc.). This comparison is given in Table 3. 
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Speed and Power Comparison This study has been conducted using 
mask extracted SPICE files, with level 3 models based on tuning from 
many fabrication experiments. The two switching tree designs 
perform almost identically, and so we provide a single result for the 
two designs. Comparison results are shown in Table 4. The power and 
peak current measurements are taken at a 40MHz throughput rate 

Synthesized Hand-Layout 
Design Switching Switching 

Tree Tree PLA 

252~ x204~ 163~ x458~ 363~ x457~ 
Core Area = = = 

0.0514mm2 0.0747mm2 0.1659mm2 

Relative % 100% 145% 323% 

Table 3 Core Area Comparison 

Design Switching PLA 
Tree 

Maximum 
Throughput 
Rate 50MHz 70MHz 

Peak Current 2.85mA 8.36mA 
at 40MHz 

Average 
Dissipation at 3.45mW 15.4mW 
40MHz 

Table 4 Speed and Power Comparison 

We note that the PLA is able to operate at almost 50% higher 
throughput rates than the switching tree design; the trade-off, however, 
is the almost 5 times increase in power dissipation and 3 times increase 
in the peak current spike. This latter result can be as important as the 
power dissipation result, since the current spike is effectively 
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multiplied by the number of cells on the chip for perfectly 
synchronized clocking (no skew between clocks arriving at the cells). 
This also speaks for producing architectures that allow clocks to be 
skewed, and the number theoretic techniques, described in the first 
part of the paper, are directly suitable for such skewed clocking, since 
the computations are carried out in independent pipelines. 

CONCLUSIONS 

In this chapter we have discussed the role of special architectures and 
dynamic logic building blocks for the construction of data stream 
DSP processing systems. These architectures are optimized for 
computing on high bandwidth streams of data, where the input and 
output data stream at the same rate. We have discussed three different 
implementation procedures based on standard binary arithmetic, a 
form of redundant arithmetic for MSB first calculations and finally a 
massive parallel architecture based on number theoretic techniques for 
feedforward DSP algorithms. In particular we have concentrated on a 
recently introduced polynomial ring mapping technique which allows 
large dynamic range computations to be performed using massively 
parallel small finite ring computational elements. The technique 
allows direct mapping of bits of either a purely real or multiplexed bit 
coded complex number to a set of independent rings; to illustrate the 
technique we have demonstrated that large dynamic range 
computations can be performed by independent residue computations 
with the smallest usable odd relatively prime moduli of 3, 5 and 7. 
Although the use of such small rings in a traditional RNS system 
would yield an inadequate computational dynamic range, the new 
technique allows usefully large dynamic range computations with 
such moduli. 

We have proposed the use of a building block based on dynamic logic 
with true single-phase clocked latches (Pipelined Switching Trees). We 
have also discussed a synthesis procedure for pipelined switching trees 
based on a mapping of the switching tree to a 2-dimensional matrix of 
layout primitives. We demonstrate that the mapping procedure is area 
efficiency by a comparison study with a hand-layout of the same 
circuit and also a PLA implementation. The synthesized layout is 
smaller than the hand layout (using a different decomposition 
procedure) and the switching tree is 3 times smaller than the PLA 
core. In SPICE simulations, the pipelined switching tree consumes 
only 20% of the power required by the PLA running at the same 
frequency. The PLA design, as expected, is able to run at throughput 
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rates that are 50% higher than the switching tree. Fabricated test cells 
of pipelined switching trees have been proven to operate at the 
40MHz bandwidth of the output drivers. 

REFERENCES 

1. McCanny, J. V. and J. G. McWhirter. "Optimized Bit Level 
Systolic Array for Convolution." lEE Proceedings, Pt. G. 1316, 
October 632-637, 1984. 

2. Jullien, G. A. "Bit-Level Systolic Arrays for High Speed DSP." 
Advances in VLSI Signal Processing. 1993 Ablex Publishing. (In 
Print) 

3. Yuan, J. and C. Svennson. "High-Speed CMOS Circuit 
Technique." IEEE. J. Solid-State Circuits. vol. 24 pp. 62-70, 
1989. 

4. McAuley, A. J. "Dynamic Asynchronous Logic for High-Speed 
CMOS Systems." IEEE J. Solid-State Circuits. 27 3 382-388, 
1992. 

5. Taheri, M., G. A. Jullien and W. C. Miller. "High Speed Signal 
Processing Using Systolic Arrays Over Finite Rings." IEEE Trans. 
Selected Areas in Comm. 6 3 1988. 

6. Song, P. J. and G. DeMicheli. "Circuits and Architecture Trade
offs for High Speed Multiplication." IEEE J. Solid-State Circ. 
26 9 pp. 1184-1198, 1991. 

7. Afghahi, M. and C. Svensson. "A Unified Single-Phase Clocking 
Scheme for VLSI Systems." IEEE J. Solid-State Circuits. 25 Feb 
225-233, 1990. 

8. Jullien, G. A., W. C. Miller, R. Grondin, Z. Wang, D. Zhang, L. 
Del Pup and S. Bizzan. "WoodChuck: A Low-Level Synthesizer 
for Dynamic Pipelined DSP Arithmetic Logic Blocks." IEEE 
International Symposium on Circuits and Systems. 1 pp. 176-
179, 1992. 

9. Jullien, G. A. and M. A. Bayoumi. "A Review of VLSI 
Technologies in Digital Signal Processing." Proceedings oj the 
1991 IEEE Int. Symp. on Circuits and Systems,. (Invited) pp. 
2347-2350, 1991. 



www.manaraa.com

362 

10. Baji, T. and e. al. "A 20-ns CMOS Micro-DSP Core for Video
Signal Processing." IEEE J. of Solid-State Circuits. Vol. 23, No. 
5, pp.1203-1211, 1988. 

11. Goto, J., K. Ando, T. Inoue, M. Yamashina, H. Yamada and T. 
Enomoto. "250-MHz BiCMOS Super-High-Speed Video Signal 
Processor (S-VSP) ULSI." IEEE 1. Solid-State Circuits. Vol. 26 
No. 12 pp. 1876-1884, 1991. 

12. Gebotys, C. H. and M. 1. Elmasry. "Optimal Synthesis of High
Performance Architectures." IEEE Journ. Solid-State Circuits. 
Vol. 27, No.3, pp. 389-397., 1992. 

13. MacQuillan, S.E. and McCanny, J.V. "A VLSI Architecture for 
Multiplication, Division and Square Root." IEEE International 
Symposium on Acoustics, Speech and Signal Processing. pp. 
1205-1208, 1992. 

14. Hatamian, M. and K. K. Parhi. "An 85-MHz Fourth-Order 
Programmable IIR Digital Filter Chip." IEEE Journ. Solid-State 
Circuits. Vol. 27, No.2, pp. 175-183., 1992. 

15. Wigley, N. M. and G. A. Jullien. "On Moduli Replication for 
Residue Arithmetic Computations of Complex Inner Products." 
IEEE Trans. Compo (In Print) 1990. 

16. Games, R. A. "An Algorithm for Complex Approximations in 
Z[e27ti/8]." IEEE Trans. Inform. Th. IT-32 603-607, 1986. 

17. Wigley, N. M. and G. A. Jullien. "Large Dynamic Range 
Computations Over Small Finite Rings." IEEE Trans. Computers. 
In Print 1992. 

18. Jullien, G. A., R. Krishnan and W. C. Miller. "Complex digital 
signal processing over finite fields." IEEE Transactions on 
Circuits and Systems. CAS-344 pp 365-337., 1987. 

19. Wigley, N. M. and G. A. Jullien. "A Flexible Modulus Residue 
Number System for Complex Digital Signal Processing." lEE 
Electronic Letters. 27 16 pp.1436-1438., 1991. 

20. Wang, Z., G. A. Jullien and W. C. Miller. "Algorithms for Length 
15 and 30 Discrete Cosine Transforms." 1991 Asilomar 
Conference on Circuits Systems and Computers. November pp. 
111-115, 1991. 



www.manaraa.com

363 

21. Jullien, G. A. "Number Theoretic Techniques in Digital Signal 
Processing." Advances in Electronics and Electron Physics. 1991 
Academic Press Inc. pp. 69-163. 

22. Soderstrand, M. A., W. K. Jenkins, G. A. Jullien and F. J. Taylor. 
"Residue Number System Arithmetic: Modem Applications in 
Digital Signal Processing." . 1986. 

23. Corry, A. and K. Patel. "Architecture of a CMOS Correlator." Int. 
Can! on Circuits and Systems. 522-525, 1983. 

24. Shoji, M. "FET Scaling in domino CMOS Gates." IEEE. J. Solid
State Circuits. vol. 20 pp. 1067-1071, 1985. 

25. Chu, M. K. and D. I. Pulfrey. "Design procedures for differential 
cascode-Voltage switch circuits." IEEE Trans. Solid-State 
Circuits. vol.SC-21 no.6 pp. 1082-1087, 1986. 

26. Shoji, M. "CMOS Digital Circuit Technology." 1988 Prentice 
Hall Inc. 

27. Yuan, J. and C. Svensson. "Pushing the Limits of Standard 
CMOS." IEEE Spectrum, February, pp. 52-53 

28. Bizzan, S., G. A. Jullien and W. C. Miller. "Analytical Approach 
to Sizing NFET Chains." lEE Electronics Letters. (In Print), 
1992. 

29. Elmore, W. C. "The transit response of damped linear networks 
with particular regard to wideband amplifiers." 1. Appl. Phys. 19, 
No.1 Jan. 55-63, 1948. 

30. Canadian Microelectronics Corporation. "Guide to the Integrated 
Circuit Implementation Services of the Canadian 
Microelectronics Corporation." . 1986. 

ACKNOWLEDGMENTS 

The author acknowledges financial support from the Natural Sciences 
and Engineering Research Council of Canada, the Micronet Network 
of Centres of Excellence, and the fabrication and equipment loan 
programme of the Canadian Microelectronics Corporation, to carry 
out some of the work described in this chapter. The author is also 
indebted to Mr. R. Grondin, and Mr. L. Del Pup for the switching tree 
software package, the comparison study data and fabrication results. 



www.manaraa.com

10 
A General Purpose Xputer Architecture 

derived from DSP and Image Processing 

ABSTRACT 

A. Ast, R. W. Hartenstein, H. Reinig, K. Schmidt, M. Weber 

Fachhereich Tnformatik, Universitat Kaiserslautem 

Postfach 3049, W-6750 Kaiserslautem, Germany 

171is paper illustrates a novel class of computational devices called Xputers, 
which are by up to several orders of magnitude more efficient than the von 
Neumann paradigm of computers. The paper shows how the new paradigm is 
partly derived from accelerating features of image processors and digital signal 
processors, and it illustrates xputer execution mechanisms and associated 
programming techniques by means of simple algorithm examples. 

1. PREFACE 
The xputer paradigm with its new data-procedural basic execution mechanisms 
and all its impacts on technology platforms and basic architectural building 
blocks, and, on application support techniques like languages, compilers and 
programming techniques is a major step away from the familiar world of 
traditional computing based control-driven procedural von-Neumann-based 
models. The main differences are: 

• the ALU of an Xputer is reconfigurable (soft) such, that it does not 
really have a fixed instruction set, nor a hardwired instruction format 

• that's why (procedural) data sequencing is needed, since instruction 
sequencing is not feasible: a data counter is used instead of a 
program counter 

• this leads to a fundamentally new machine paradigm and a new 
programming paradigm 



www.manaraa.com

366 

Algorithm 6800 I MoM") / Acceleration 
16 MHz millisec 10 MH: millisec factor 

CMOS Design Rule Check 91330.20 39.0300 2340 

Digital Filter 9126.40 29.4400 310 

Lee Routing: seek S 42.50 0.0625 680 

wavefront 70.00 0.3750 186 

backtracking 23.25 0.1250 186 

a) 
Algorithm Data Manipulation Addressing Control 

CMOS Design Rule Check 7% 93 % <1 % 
Digital Filter 28 % 58 % 14% 
Lee Routing: seek S 14 % 74% 12 % 

wavefront 6% 92 % 6% 

b) backtracking 17% 67% 17% 

Fig. 1: Performance Analysis: a) MoM-2 acceleration factors compared to Motorola 
6800, b) overhead analysis on DEC VAX-1l1750 

Solutions for all this lead to a novel interdisciplinary approach such, that a reader 
usually is not completely familiar with all the backgrounds needed by the reader. 
To achieve a more detailed comprehensibility of all fundamentals and relevant 
aspects, such as basic execution mechanisms, architectural elements, new 
programming paradigms, compilation techniques, as well as the feasibility of the 
high efficiency, a book of several hundred pages would be needed. Since only 
limited space is available for this paper, major parts of it are organized more as 
an illustration. The sales pitch which sometimes seems to be visible in the 
presentation is motivated by our desire to convince other researchers, that the 
principles of the experimental hardware and software illustrated here, point out a 
way to a highly promising new R&D area worth to invest major efforts in 
investigating all its relevant aspects. 

2. INTRODUCTION 
For quite a number of commercially important applications extremely high 
throughput is needed at very low hardware cost. Often these goals cannot be met 
by using the von Neumann paradigm nor by ASIC design. In such cases even 
parallel computer systems [19] [41] ordataftow machines [8] do not meet these 
goals because of massive parallelization overhead (in addition to von Neumann 
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overhead) and other problems. Supercomputers, digital signal processors and 
image processors provide interesting high performance features, but do not well 
fit to general purpose application. We would like to propose a new computational 
approach: the Xputer machine paradigm. The term xputer clearly distinguishes 
his data-procedural execution model from the control-procedural model of VOil 

Neumann computers. 

This paper first briefly illustrates the new machine paradigm and its basic 
execution mechanisms and then illustrates programming and execution of some 
example algorithms on the MoM xputer architecture. 

For algorithms with regular data dependencies the Xputer paradigm is by several 
orders of magnitude more efficient than the von Neumann paradigm. Even for 
unstructured spaghetti-type sources the Xputer paradigm is at least half an order 
of magnitude more efficient. The high efficiency of Xputers has several reasons: 

• Their data-procedural operational principles cope much better with 
most kinds of overhead and bottlenecks being typical to the von Neu
mann machine paradigm: 

• address computation overhead 
• control flow overhead, 
• ALU (multiplexing) bottleneck 
• processor-to-memory communication bottleneck 

• Xputers support some compiled fine granularity parallelism inside 
their reconfigurable ALU (rALU). 

• A smart register file with a smart memory interface contributes to fur
ther reduction of memory bandwidth requirements. 

• Xputers are highly compiler-friendly by supporting more efficient op
timizing compilation techniques, than possible for compilers for com
puters. 

Commercial exploitation of Xputers is now becoming feasible by the progress 
and commercial availability of modem field-programmable technology [7]. 

Fast turn-around ASIC design. Recently field-programmable gate arrays have 
become available, which are compatible to particular real (mask-programmable) 
gate arrays. Due to code compatibility the personalization code of a field
programmable version can be easily translated into that of a real gate array (being 
faster and of higher integration density). Such conversions are carried out by 
retargeting software (e. g. [31]), which also provides an efficient bridge between 
computational paradigms and ASIC design. Compared to conventional ASIC this 
has the benefit, that simulation is replaced by execution being several orders of 
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magnitude more efficient. Recently considerable attention has turned over to the 
topic of retargeting. This indicates that the high significance of retargeting for the 
future trends has been widely recognized. 

3. XPUTERS: WHY AND HOW? 
This section first discusses the inefficiency of von Neumann processors, resulting 
from overhead phenomena and then briefly summarizes architectural acceleration 
features known as a remedy in image processing and nsp. Later in this paper it 
will be shown, that these features are important ingredients to (non-von
Neumann) Xputer architectures. 

3.1. The von Neumann machine, its bottlenecks 
and overhead phenomena. 

For improved comprehensibility this paper several times illustrates the 
differences to basic execution mechanisms of computers. These differences are of 
interest, since the principles of the machine platform has a strong impact on 
overall system performance, as well as on the efficiency of system programming 
and application development. Computers have the following bottlenecks and 
overhead phenomena: 

• the ALU bottleneck 
• accessing overhead 

direct (address computation overhead) 
• indirect (data restructuring relocation overhead) 

• control flow overhead 
• processor-to-memory communication indigestion 

The ALU bottleneck. Although is provides a rich repertory of operators, the 
hardwired ALU of computers is a narrow bandwidth device which mainly can 
carry out only a single simple operation at a time using only three or less 
operands. This lack of parallelism we call the ALU bottleneck. It is caused by a 
multiplexer, the decoder of which is driven by the hardwired instruction 
sequencer. Such an ALU has a fixed hardwired instruction. Microprogrammable 
von Neumann machines are nested machines, where the inner machine has a 
hardwired (micro) instruction set which exhibits the same typical von Neumann 
bottlenecks and overhead phenomena. This means, that microprogramming does 
not provide an escape from inefficiency. 

Accessing overhead. The von Neumann needs CPU time not only for direct data 
manipulation, but also to compute direct data addresses (direct accessing 
overhead) and sometimes also to relocate data for rearrangement of data 
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Fig. 2: Illustrating cellular machine use in image processing: array of PEs (Processing 
Elements) [35]): a) square array. h) hexagonal array. 

structures (indirect accessing overhead), This is an important issue, since on a von 
Neumann platform the percentage of CPU time needed for address computation 
may be very high (up to 93%, see Fig. 1 b). 

Control Flow Overhead. Many of the instructions within a (machine-)program 
are control instructions. These instructions are causing control flow overhead. 
This will be explained later (also see section 5.). 

Processor-to-memory communication indigestion. The processor-to-memory 
communication channel is a performance bottleneck not only per se, but also by 
the high communication requirements due to the above overhead and bottleneck 
phenomena (memory access cycles for excessive instruction fetch, to save 
intermediate data values. to execute accessing overhead and control flow 
overhead). In parallel computer systems further performance degradation (per 
processor) stems from inter-processor communication overhead and other 
negative effects. 

3.2. Cellular Architectures 
Cellular architectures have successfully evolved as specialized image processors 
(Fig. 6), which efficiently support pixel operations, where the new value xo' of 
the current center pixel is computed from its previous value Xo and the values Xl 

through Xs of all its neighbor pixels (data dependencies: see Fig, 2 a), or, Xl 

through x6 (Fig. 2 b). respectively: 

hexagonalkemel: xo' == f(xo' xl' ... , x6 ) (1) 

A pixel and all its nearest neighbors are held by a 3-by-3 set of registers, often 
called cellular registers or kernel. which operates as a 3-by-3 window onto the 
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3-by-3 "kerneF' .. 
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a) neighbour pixel logic 

Fig. 3: 3-by-3 kernel: b) a window onto the pixel map, a) its video-serial implementation. 

pixel map of the image (Fig. 3 b). (A hexagonal kernel has only 7 registers, see 
Fig. 2 b). Shift registers used as a delay support on-line processing of video
sequenced image pixels (Fig. 3 a). 

The term cellular (logic) machine is used for earlier machines in which a single 
processing element PE is used to operate sequentially on all pixel values Xo 
through Xs [35]. Modem architectures (mostly called cellular array s) use a 
tightly coupled array of 9 PEs running in parallel (Fig. 2: each pixel Xi has its 
own PEi ) to speedup throughput. 

A number of cellular logic machine concepts using a 3-by-3 kernel have been 
published in the 50s ([2], [21], [5], and [40]), or patented [10], respectively. The 
first implemented cellular logic machine is Cellscan [32] (based on the patent of 
Golay), followed by Glopr (Golay LOgic PRocessor) [33], BIP (Binary Image 
Processor) [11]. Due to the immature state of the art in technology all three of 
them have only a single PE for serial operation. Glopr is similar to the Cellscan, 
but uses a hexagonal cellular register kernel and features electrically alterable 
length of the shift registers ranging from 32x32 and 64x64 up to 128x 128 pixels. 
BIP, using a 3-by-3 kernel, has been commercialized as part of the Grafixl sys
tem for character recognition. 

Later on cellular arrays have been developed: difO [12] for automatic micro
scope for human blood analysis has been the first cellular logic machine produced 
in larger quantities. The PEs operate by lookup tables holding the complete set of 
Golay primitives. The TAS (Texture Analysis System, [29]) is similar to the diff3 
and has been commercialized by Leitz (Germany) in 1979. 

Modem image processors are RAM-based, i. e. work on primary memory: the 
shift register is replaced by an address generator. Most of them are only pseudo
cellular architectures, where mainly only algorithms and register file reflect cel
lularity. The PHP (Preston-Herron Processor, [18], Fig. 4) loads the 3x3 kernel 
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Fig. 4: Cellular register file of the PI-IP [18]). 

from 3 RAM modules which hold identical (redundant) data to provide higher 
processor to memory communication bandwidth. The addresses to select the pix
els are generated by simple counters. The TRO (TRiakis Operator [34]) is an im
proved version of the PHP having more memory modules and larger lookup ta
bles which enable it perform 3-dimensional cellular transforms. 

PicapI (PICture Array Processor, [23], Fig. 3) combines properties of Glopr and 
BIP by including a template matching unit and a numerical convolver. Data 
transfer to the kernel may be serially; or, in parallel from nine image memories 
holding identical data. Picap2 [22] is 20 times faster and has a 20 times larger 
memory. The very powerful Cytocomputer [39] consists of a pipeline of 80 
Cellscan-like processors with cellular registers. The DIP-I (Delft Image 
Processor [9]) combines a 3-by-3 cellular kernel with some traditional computing 
features: additional two general-purpose ALUs and its multiplier are a step 
towards being a general purpose processor. Cellular architectures have influenced 
the development of the first Xputer architecture (MoM-I, formerly called PISA 
[17]). 

The AIS-5000 [42] is a I-dimensional or scan line processor, using a I-by-n 
window instead of a 3-by-3 window. This architecture is a n-by-I array with n 
between 128 and 1024. The PE array provides a PE for each column of the image. 
The mcmory associated to each PE holds an entire column and has space to store 
all intermediate results. Fig. 5 summarizes the features of the architectures 
described above. 

High p~rfol'mance of image processors is achieved by minimizing both, direct 
addressing overhead (address computation) and indirect addressing overhead 
(rearrangement of data blocks) through hardware-supported windowing, so that 
for each pixel operation the right data are immediately available at the right time 
at the right place (in the kernel). In sequential cellular logic machines the 'right 
time' is achieved by waiting loops (shift registers) for data (Fig. 3 a), such that no 



www.manaraa.com

372 

acronym (name), 
Mega 

host maker features and application 
array size pixops 

(published) Isec. 

Cellscan, 64x64 0.004 stand Perkin- first implem. of Golays patentllU]; 3x3 
([32], 1963) alone Elmer kernel; operates serially on neighbors; 

application: hematology 

Glopr 32 x 32, 64 x 0.3 Varian Perkin- like Cellscan; performs operations ba~ed 
(Golay LOgic 64,128 x 128 620i Elmer on all Golay primitives; hexagonal ker-
PRocessor), nel is processed in parallel; application: 
(133],1971) hematology, gen. purp. image processing 

BIP (Binary Image programmable 0.3 POP-II Informa template matching (9 tempI. in parallel) 
Processor) , tion on a hexagonal or 3x3 kernel; commer-
([11],1971) Int'l Inc cial application: character recognition 

diff3 64x64 40 Data Coulter first mass produced cellular architecture; 8 
([12],1980) General E1ec- PEs in parallel; ROM f. Golay primitive.~ 

Nova-4 tronics appl.: automatic microsc. blood analysis 

TAS (Texture Analysis 256x256 approx. LSI· I I Leitz similar to diff3 but fa~ter; application: 
System), ([29], 1979) 50 general purpo.~e image proce.~sing 

PHP (Preston-Herron programmable 1.5 Perkin- Perkin- ba~d on diff3, for 2-dimensional cellular 

Processor) , (wHhin IimHs) Elmer Elmer transforms; 16 PR~ in parallel; memory 
([18],1982) 3230 instead of shift registers 

TRO (TRiakis programmable 1.5 Perkin- Perkin· ba~d on PHP. but 3-dimensional cellular 
Operator), (wHhin IimHs) Elmer Elmer operations 
(134],1983) 3230 

Picap! (PiCture 64x64 0.8 Cniv. combines G10pr and Bip, 3x3 kernel; 
Array Processor), 4-bit grey level Lin- application: fingerprint analysis 

([23],1973) koping 

Picap2, 512 x 512 16 Syst.Eng. lIniv. 20x faster Picap I; multiproce.~sor sys-
(122]. 1982) Labs Lin- tern: 7 PUs; application: general purpose 

77135 koping image proce.~sing 

Cytocompu ter, 512x 120 PDP-II ERIM* pipeline of SO C ellscan-like PEs: each 
([39],1978) programmable or with 3x3 kernel; application: air force 

VAX II automatic target detection 

DIP·! (Delft Image 256 x 0.66 HPI()(K) Univ. combine.~ cellular logic hardw. w. gen. 
Processor) , programmable Delft purpose ALlis: applic.: medical micros-

(19], (981) copy and indu.~trial materials inspection 

MoM·! (Map- programmable 0,8 ELTEC Univ. data-procedural general purpose proce .. -
oriented Machine), kernel, image Kaisers sor with scan window & reconfigurable 

([15],1988) max.5x5 processor lautern ALU using programmable logic IC .. ; 

AIS·5000 [42] programmable: scan line proce.~or. massively parallel 
lx128 - lxl024 

Fig. 5: Summary of features of cellular machines 

address is needed. RAM·hased image processors reach this goal hy multiple 
address generators (Fig. 4) running in parallel with other hardware and hy 
redundant or interleaved memory: ohviously the kernel organization directly 
points out an efficient storage scheme for redundant or interleaved memory use. 
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3.3. Digital Signal Processors (DSPs). 
Some digital signal processors (DSPs) provide hardware support to accelerate 
addressing. For example, the Texas Instruments TMS 320C25 [3] has an 
additional register arithmetic unit (ARAU) for address computation, supporting 
auto-increment, auto-decrement addressing. and bit-reversal addressing (useful 
for fast fourier transforms (FFT». A Repeatcounter supports linear address 
sequences such, that for repetitive use of the same statement does not require 
repeated instruction fetch (to avoid control flow overhead). 

The DSP Motorola 56000 [28] uses an address generation unit (AGU) consisting 
of two address ALUs and several registers. to automatically generate addresses 
for two operands in parallel. Each ALU is capable to update an address registers 
in a single machine cycle. This update operation is performed by one of the 
following add operations: add, two's complement add, increment by one, 
decrement by one. reverse-carry add, and modulo add. The latter is a special 
addressing mode useful to built circular buffers. or for sequential addressing 
within multiple tables or arrays. 

The addressing feature of a DSP, in a wider sense, is comparable to that of vector 
processors. if we neglect the address dispatcher for interleaved memories in the 
latter. These address sequences can be used for linear addressing. modulo 
addressing, and bit-reverse addressing. These address sequences are generated 
automatically without use of the main ALU, reducing addressing overhead. 

4. INTRODUCING the XPUTER 
Main stream high level control-procedural programming and compilation 
techniques are heavily influenced by the underlying von Neumann machine 
paradigm. Most programmers with more or less awareness need a von-Neumann
like abstract machine model as a guideline to derive executable notations from 
algorithms. and, to understand compilation issues. Also programming and 
compilation techniques for Xputers need such an underlying model. which, 
however, is a data-procedural machine paradigm, also called data sequencing 
paradigm .. 

This section introduces and illustrates the basic machine principles [19]. Then the 
MoM-4 architecture is described, which later will be used as a vehicle to illustrate 
execution mechanisms via simple algorithm examples. Other examples will 
illustrate MoPL-3. a data-procedural programming language. This paper also 
tries to show the reasons of the good performance results having been obtained 
experimentally (e. g. see Fig. 1 a). 
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MegaPixops I second Cytocomputer (80) (no. of processors) 

• (1, if not indicated) 
8 

diff3l 
TAS 10 

• Picap2 (7) 
7 10 

TRO (16) •• 
10 6 PHP (16) 

BIP • Picap1 • • DIP-1 

10 5 Glopr 
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4 

• Cellscan 

10 3 year 

1~ 60 1970 1980 1990 

Fig. 6: Evolution of cellular machines for image processing. 

4.1. Xputer Machine Principles. 
Fig. 7 b illustrates the basic xputer architecture principles. The key difference to 
computers is, that data sequencer and a reconfigurable ALU replace computers' 
program store, instruction sequencer and the hardwired ALU (this view is 
simplified). For operator selection instead of the sequencer another unit is used, 
which we call residual control. 

Smart Register File. Due to their higher flexibility (in contrast to computers) 
xputers may have completely different processor-to-memory interfaces which 
efficiently support the exploitation of parallelism within the rALU. Such an 
interface we call a scan cache. It implements a hardwired window to a number of 
adjacent locations in the memory space. Its size is adjustable at run time. Such a 
scan window may be 'placed' onto a particular location in memory under control 
a data sequencer. The scan cache is a generalization of the 3-by-3 or hexagonal 
kernel used by cellular or pseudo-cellular image processors (for a survey see 
section 3.2.). A sequence of locations we call a scan path or scan pattern (for 
examples see later). 

The Data Sequencer. The hardwired data sequencer features a rich and flexible 
repertory of scan patterns. for moving scan caches along scan paths within 
memory space (e. g. see Fig. 7 c). Address sequences needed are generated by 
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hardwired address generators having a powerful repertory of generic address 
sequences. For more details see later. Mter having received a scan pattern code a 
data sequencer runs in parallel to the rest of the hardware without stealing 
memory cycles. This accelerates xputer operation, since it avoids performance 
degradation by addressing overhead. 

Similar acceleration features are known from instruction sets with auto-increment 
features, from a digital signal processor with a bit reversal addressing feature [28] 
(see section 3.3.), and from DMA controllers with very simple linear address 
sequences, mainly as needed for block transfers. The above control-procedural 
processor [28] even has an auto-increment feature for instruction iteration, where 
even instruction fetch iteration is suppressed (a pseudo-data-procedural mode, 
which avoids control flow overhead). For the xputer, however, the data sequencer 
is general purpose device covering the entire domain of generic scan paths, which 
directly maps the rich repertory of generic interconnect patterns (see [37] et a1.) 
from space into time to obtain wide varieties of scan patterns, like e. g. video scan 
sequences, shuffle sequences, butterfly sequences, trellis sequences, data-driven 
sequences, even nested sequences, and many others. Instead of being a special 
feature it is an essential for xputers: the basis of the general purpose machine 
paradigm. 

But we did not find publications of any address generators Xputers avoid a major 
part of such overhead by data auto sequencing and residual control, which mainly 
are effective in operation iterations and in local branching. 

Reconfigurable ALU. Xputers (Fig. 7a) have a reconfigurable ALU (rALU), 
partly using the technology of field-programmable logic. Fig. 7 a shows an 
example: the rALU of the MoM-4 Xputer architecture. The four smart register 
files called scan caches are explained later (lower left side in Fig. 7a). The MoM-
4 rALU has a repertory of hardwired operator subnets (see lower right side in 
Fig. 7a). Within the field-programmable part of the rALU additional operators 
needed for a particular application may be compiled by logic synthesis techniques 
(upper right in Fig. 7a) A global interconnect-programmable structure (centre in 
Fig. 7a) is the basis of connecting these operators to form one or more problem
specific compound operators, what will be illustrated later by a simple algorithm 
implementation example. 

rALU Configuration is no Microprogramming. Also microprogrammable von 
Neumann processors have a kind of reconfigurable ALU which, however, is 
highly bus-oriented. Buses are a major source of overhead [16], especially in 
microprogram execution, where buses reach extremely high switching rates at 
run time. The intension of rALU use in xputers, however, is compound operator 
configuration at compile time (downloaded at loading time) as much as possible, 
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so that path switching activities at are minimized and the underlying 
organizational overhead is pushed into compile time to save the much more 
precious run time. 

Compound Operators. The rALU may be configured such a way, that one or 
more sets of parallel data paths form powerful compound operators which need 
only a single basic clock cycle to be executed. This rALU uses no fixed 
instruction set: compound operators are user-defined. Since their combinational 
machine code is loaded directly into the rALU, xputers do not have a program 
store nor an instruction sequencer. Instead a data sequencer is used which steps 
through the data memory to access the operands via register files called data scan 
caches. Xputers operate data-driven but unlike data flow machines, they feature 
deterministic principles of operation called data sequencing. 

Summary of Xputer Principles. The fundamental operational principles of 
Xputers are based on data auto sequencing mechanisms with only sparse control, 
so that Xputers are deterministically data-driven (in contrast to data flow 
machines, which are indeterministic ally data-driven by arbitration and thus are 
not debuggable). Xputer hardware supports fine granularity parallelism 
(parallelism below instruction set level: at data path or gate level) in such a way 
that internal communication mechanisms are more simple than known from 
parallel computer systems. 

s. THE MoM XPUTER ARCHITECTURE 

To use a practical and comprehensible example for illustration of the novel task 
of the compilet a simple algorithm example implementation on the MoM Xputer 
architecture will be used. This MoM (Map-oriented Machine) has a two
dimensional memory organization and uses some extra features which further 
support optimization efforts of the compiler: the concept of the scan cache (a 
smart register file: featuring some hardwired smartness). 

Scan Cache. The MoM-4 has 4 scan caches (Fig. 7b and 2c) operating as two
dimensional windows, adjustable at run time (some size examples in Fig. 7c) up 
to a maximum size (5 by 5). Each cache can be used to read, write, or read and 
write data from and to the data memory. A similar scan cache concept has been 
used earlier ([41], [39]), but never as an essential of a machine paradigm [15], 
[19] like the xputer. 

Parallel Data Sequences. Since the MoM-4 has multiple scan caches, several 
such data scan caches may be connected to the same compound operator, so that 
they may run in parallel (e. g. see Fig. Wc and line (33) thru (36) in Fig. 17) 
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data+ 

Fig. 7: Basic structures of Xputers and the MoM architecture: a) reconfigurable ALU (rALU) 
of the MoM, b) basic structure of Xputers, c) MoM cache size examples (left side) and a scan 
pattern example, d) a few other scan pattern examples. 

communicate with each other through the rALU (Fig. 10e). By redundant 
multiple memory (like in [\9] and [24]) or interleaved memory use such parallel 
data sequencing provides a substantial throughput improvement. 

Hardwired Data Address Generator. For the sequencer of the MoM a 
parameter-driven powerful hardwired address generator has been developed [14]. 
Examples of such data scan patterns are single steps as well as longer generic scan 
sequences. such as video scan sequences, shuffle sequences, butterfly sequences, 
trellis sequences and others (for a very few examples see Fig. 7d). The data scan 
patterns can be adjusted in parameter registers of the data sequencer or they can 
be evoked by the decision data feedback loop from the r-ALU (Fig. 8b). With this 
feedback loop data-dependent cache movements can be performed (c. g. lower 
left scan pattern in Fig. 7d). 

Residual Control. Also tagged control words having been inserted sparsely into 
the data memory map (Fig. 8c) can be recognized and decoded within the rALU 
to derive suitable decision data to select the next scan pattern. This kind of control 
we call residual control, because the decoder within the rALU is called only upon 
request and does not steal cycles from primary memory. By this means a sequence 
of several data scan patterns can be executed. Also residual control os a source of 
improved efficiency, what will be illustrated in section 5.1. 
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decision data rALU 

external event flag RCW 

Fig. 8: MoM Decision mechanisms: b) branching hardware more efficient 
than a) von Neumann branching, c) type of escapes from scan patterns 

Efficient Branching Mechanisms. The MoM architecture provides branching 
mechanisms which are more efficient than those known from von Neumann 
architectures. Von-Neumann-type branching requires one or more control 
accesses to primary memory, because only after the decision the next control state 
is known (Fig. 8). Depending on the kind of loop exit control code the number of 
memory accesses may be higher, even if no address computation is involved 
(which would cost further memory address cycles). For a number of cases such 
as e.g. nearest neighbor transitions in data memory space (in curve following, for 
example). 

The MoM architecture provides more efficient branching modes, where usually 
no control action at all is needed, what saves memory cycles (Fig. 8b). For data
dependent scan patterns this is achieved by direct manipulation of the least 
significant data address bits by decision data bits. Because this decision data 
bypasses the sequencer we call this mechanism a local branching short-cut .. 
Other branching modes (called escape modes) also avoiding control flow 
overhead, are handled within the address generator (see next paragraph). For 
instance, lines (46). (48), (50), (56), (58), and (60) in Fig. 20 (l!lb..1..il.and~ 
clauses) refer to the 4 array limit parameter registers (within the address 
generator) specifying the 4bordersofthearray P i xMap (compareFig. 19). Fig. 8c 
lists all types of escapes available. For more details see section 6.2.3. 

5.1. Illustration of the MoM execution mechanism 
The following algorithm execution example demonstrates the essentials of the 
Xputer execution mechanism and illustration the task of the new kind of 
compilers needed [41]: a kind of fine granularity scheduling of caches, rALU 
subnets, and of data words. Fig. 9a shows the algorithm in a textual high level 
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language notation, Fig. 9b its graphical representation: a signal flow graph (SFG). 
Fig. 9d illustrates, how this algorithm is executed on the MoM Xputer 
architecture. The upper side of Fig. 9d shows the scan cache (format: 1 by 4 
words), the rALU subnet for the compound operator (also compare Fig. 9a and 
Fig. 9b) and the interconnect between cache and subnet. The register inside the 
rALU subnet saves memory accesses, because the intermediate operands c(O) 
through c(7) do not need to move to memory. The bottom of Fig. 9d shows the 
data map (location of operands in memory. 

The execution will run as follows. Starting at the left end of the data map The scan 
cache. The scan cache scans the data map area from left end (location shown in 
Fig. 9d) to the right end (shaded rectangle at the right of the data map in Fig. 9d). 
The sequence of arrows below the data map shows the scan pattern having. 

Note, that no control action is needed because the auto-execute mode, where, 
whenever the scan cache is placed somewhere in the memory space (i. e. at each 
step of a scan), two things are carried out automatically (i.e. without having been 
called explicitly): the movement of data between scan cache and memory (auto
xfer mode) as well as the application of the marked r ALU subnet to the variables 
held by the scan cache (what we call auto-apply mode). Note that by access mode 
tags only a minimum of memory semi cycles is carried out: read-only tags for all 
4 words by this example. In our example 8 steps (x width=1, y with = 0) are 
carried out (Fig. 9d shows initial and final cache locations). From this example 
the task of the compiler may be summarized: 

• define a data map (storage scheme) 
• select a scan cache size and format 
• define a compound operator and its scan cache interconnect 

• select a suitable scan pattern available from address generators 
• for linkage select a TCW and place it into the data map 

At the end of the above data sequence example the cache finds a tagged control 
word (TCW) which then is decoded (right side of the map in Fig. 9d) to change 
the state of the residual contrallogic to select further actions of the Xputer. This 
sparse TCW insertion into data maps we call sparse control. Note that the control 
state changes occur· only after many data operations (driven by the data 
sequencer). 

5.2. A Multi-Cache Example 
Fig. 10 shows an algorithm implementation example, a 16 point constant 
geometry FFT, where three scan caches run in parallel. Fig. 10 a shows the signal 
flow graph and the storage scheme (the grid in the background). The 16 input data 
points are stored in the leftmost column. Weights w are stored in every second 
column, where each second memory location is empty (for regularity reasons). 
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a) 
C(O):= 0; 

for i from 1 to 8 do 
C(i) := 

endfor 

B(i) & DO) 
I E(i) * F(i) 
+C(i-l); 

auto;; e) 

xfer data map (in data memory) 
;"Ia.'-"'-'-~ 

B(O) BO) B(2) B(3) B(4) B(5) B(6) B(7)~ TCW~ 

D(O) D(l) D(2) D(3) D(4) D(5) D(6) D(7)r-i 
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E(O) E(l) E(2) E(3) E(4) E(5) E(6) E(7)~ ~ 

F(O) F(l) F(2) F(3) F(4) F(S) F(6) F(7)~ :s.. .................... ~ .. .., ... .., .. .., .. .., -

TC[1g " residual 
control 

j) '::: 

scan pattern 

Fig. 9: Simple systolizable algorithm MoM execution example illustrating the 
compilation task: a) textual algorithm specification, b) graphic version of specifi
cation: signal flow graph (SFG), c) deriving a data map from SPG, e) deriving a 
compound operator for rALU from SPG, d) deriving scan cache size, rALU inter
connect and scan pattern (also illustrating auto-apply and auto-xfer operation: 
needed for data-procedural machine principles) 



www.manaraa.com

a) 

r loop 
N --oute 

SCA 
PAllE RN 

c) 

.... 

rloop1! inne 
compo 

SCA 
PAllE 

WId ( 
N .... 

RNs 

381 

Legend: 
~~~uterS can -~ t:: 

~ 8 
t:: .~ ':i <:: 

~ /.,.; 
~ ::! ....-

~ ./ '-' '-l 
"y 14'" -~ t:: 

I-"" 14'1 8 
~ t~ ~ 

1-
::! 
£t-

~ ::! 

t- O 
14'" 

V"I. 7'" .",¥,A 
r-1~..r-___ .,,. .,,/r--

r.'/'~ 
~,,~ 

fl:] il~~~~lon 
V'~ final 
;I..".-,~ location 

e) 

~""''''''~~~'''''\.,,~'''''~~ ~ fine grain parallelism 

~ r • A LU 8ubnet t: 
~ ~, ~~~ 

Fig. 10: Constant geometry FFf algorithm 16 point example using 3 scan caches synchro
nously in parallel: a) signal flow graph with data map grid and a scan cache location snap
shot example, b) deriving rALU subnet, scan cache sizes and interconnect from 
compound operator, c) nested scan pattern illustration, d) illustration of fine grain paral
lelism: single cache use, e) multiple cache fine grain parallelism: field-programmable 
rALU as a communication mechanism. 

Fig. 10 b shows the cache adjustments: the 2-by-2 cache no. 1 is the input cache 
reading the operands a and b, and the weight w. Caches no. 2 and 3 are single
word result caches. Fig. 10 b also shows the compound operator and its 
interconnect to the three caches. This is an example of fine granularity 
parallelism, as modeled by Fig. 10 e, where several caches communicate with 
each other through a common rALU. Fig. 10 c illustrates the nested compound 
scan patterns for this example. Note, that with respect to performance this 
parallelism of scan caches makes sense only, if interleaving memory access is 
used, which is supported by the regularity of the storage scheme and the scan 
patterns. 
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6. A PROGRAMMING LANGUAGES FOR XPUTERS 
This section introduces two languages (also see Fig. 11): a specification language 
SYS2 and a high level xputer programming language MoPL-3 (Map-oriented 
Programming Language) which is easy enough to learn, but which also is 
sufficiently powerful to explicitly exploit the hardware resources the xputer 
offers. For an earlier version of this language we have developed a compiler [41]. 

6.1. SYS2: Mapping systolic arrays onto xputers. 
We have experimented with an approach using SYS2 very high level 
specifications as a source input. With this approach we have examined some 
program generation techniques, which transform high level specifications into an 
equi valent high level xputer program (MoPL-l). Since an xputer scan cache 
provides neighborhood communication very efficiently [13], it is most promising 
to adapt techniques from the area of automatic synthesis of systolic arrays [26], 
briefly called systolic synthesis ([6], [25], [27] et al.); for an introduction to 
systolic arrays see [24], [30], [36], or others. Systolic Synthesis makes use of 
nearest neighbor communication within a VLSI processor array by projecting the 
data dependence graph of an algorithm into time and physical processor space. 
Systolic synthesis can handle only systolic algorithms or systolizable algorithms 
(i. e. algorithms which can be converted into systolic algorithms), which are 
algorithms with regular data dependencies. (For a survey on systolizable 
algorithms see [24].) 

Projection techniques from systolic synthesis have been adapted for parallelizing 
compilers for parallel computer systems. In the scene of parallel computing such 
techniques are called systolizing compilation, where the usual processes are 
modeled by the processing elements known from systolic synthesis, so that a 
concurrent implementation is derived. An xputer, however, is a monoprocessor. 
The problem therefore is to map the spatially distributed parallelism onto a data 
sequencing scheme suitable for xputers. For illustration let us use a 3 by 3 matrix 
multiplication example: 
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n 

Cij = Laik·bkj (2) 

k = 1 

Several systolic synthesis systems. which have been implemented recently, 
usually accept nested loop notations as high level specifications ([6], [25], [27]). 
Such specifications look procedural, but the semantics is quite different: the 
intension is to express data dependencies, but not an order of execution (compare 
Fig. 9 a and b). Expressed in SYS2, the source language for the SYS3 systolic 
synthesis system [25]. the above matrix multiplication example is specified by the 
following source text: 

~ I := 1 .t.Q. 3 d2. (1) 
~ J := 1 .t.Q. 3 d2. (2) 
~ K := 1 .t.Q. 3 d2. (3) 

C[I,Jj := C[I,Jj + A[I,Kj * B[K,Jj; (4) 

..................... _-_ ... _-----_._--------_._--------- .. _--_. __ ._---------_ .. __ ...... _---_ .................................................. -... ---... -_ .. _---_ ................. . 
Adjustment ABCfonn ~ C Ccache [1:1, 1:1,31:1] hlImlk [1.1] 

~ -.,-~~ ~ 

<caCjlre#l>'<'OCb~~,tb 

Bcache [1:1,1:3. 31:11 ~ [1,1] 

a)M~:tb FT~31: 
rALUsubnet MAC is 
Ccache:= -

b) 

Acache [1,1] * Bcache [1,1] 
+ Acache [2,1] * Bcache [1,2] 
+ Acache [3,1] * Bcache [1.3]; 

MAC l$J¥I4l Bcache 

c) 

ScanPattern 
ACscan.i.i~. 

.. ~ ... :- .. ~ .... ~ .. 
I I • I - ... -_1...- .. -- .. -
: : •• I 
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I : • I 

--.--~--~. 
I I •. 

BCscan .i.i 2 ilill! [I ,0], 1 
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Fig. 12: lllustrating the declaration part of the MoPL program for multiple-cache 3-by-3 matrix 
multiplication: a) scan cache fonnat adjustments ABCfonns, b) compound operator MAC, 
three scan patterns Ascan, BCscan, and ACscan. 
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A, B, C [1:3, 1:3, 31:0]; (5) 
(6) 

AgjJ,litm~Dt ABCform ll. (7) 
(8) 
(9) 

Aeaehe [ 1 : 3, 1: 1, 
Beaehe [ 1 : 1, 1: 3, 
Ceaehe [1: 1, 1: 1, 

31:1] b1!.Ddh 
31:1] bllDSHlil 
31: 1] bSlngh 

[1,1], 
[1,1], 
[1,1]; 

rALUiubnlilt MAC ll. 

(10) 
( 11) 

Ceaehe=Aeaehe [1,1] * Beaehe [1,1] (12) 

SeanP1!.Uern II Asean 
BCsean 
ACsean 

+ Aeaehe [2,1] * Beaehe [1,2] (13) 
+ Aeaehe [3,1] * Beaehe [1, 3]; (14) 

llAY, 
2 ~ [1,0], 
2 ~ [0,1]; 

(15) 
(16) 
(17 ) 
(18) 

Fig. 13: MoPL declaration part for matrix multiplication example in Fig. 12 

The program generator having been implemented at Kaiserslautem generates a 
MoPL-l program (MoPL-l is an earlier version of MoPL-3). Next section 
describes a MoPL-3 program solution of this algorithm example. 

6.2. MoPL-3: A Data-procedural Programming Language 
This section introduces the essential parts of the language MoPL-3 and illustrates 

its semantics by means of three program text examples: the above 3-by-3 matrix 
multiplication, the constant geometry FIT algorithm from Fig. 10, and the data 
sequencing part for the JPEG zigzag scan being part of a proposed picture data 
compression standard. MoPL-3 is an improved version of MoPL-2 having been 

implemented at Kaiserslautem as a syntax-directed editor [41]. 

The Language MoPL-3 is an extended dialect of the programming language C. 
The main extension issue is the data location or dnta state such, that we 
simultaneously have two different kinds oflocation or state. There is the familiar 

von-Neumann-type control state (current location of control). which e. g. is 
handled by goto statements referencing control label locations within the 
program text, or, by other control statements. During execution of xputer 
programs such a control state is coexisting with one or more £kua location states, 
what will be illustrated subsequently. (The control flow notation does not model 
the underlying xputer hardware very well, since it has been adopted from C for 
compatibility reasons to minimize programmer training efforts.) 
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(19) 
(20) 

(21) 

(22) 

(23) 
ACsean (Asean), Asean (BCsean), ACsean (BCsean); (24) 
~ (25) 

~ (26) 

Fig. 14: MoPL statement part for matrix multiplication example in Fig. 12. 

6.2.1. Matrix multiplication example 
In addition to current control locations MoPL-3 programs also have current data 
locations, which are manipulated by move t 0 statements and scan patterns. Such 
a current data location is the current location of the scan cache. The statement 
move t 0 A [ 1, 1] , for instance, says: move the cache to the location, where the 
variable A [ 1 , 1] is stored. A current data location does not change unless a data 
flow statement is encountered. I. e. after completion of a scan pattern the cache 
does not change its location, until another scan pattern or a move to statement is 
encountered. In case of multiple scan cache use the MoPL program has multiple 
current data locations. For example the statement move to A [ 1 , 1], B [ 1 , 1] , 

C [1,1] says: move physical cache no. 1 tOA [1,1] ,cache no. 2 to B [1,1] ,and, 
cache no. 3 to C [ 1 , 1] . The following two MoPL program examples illustrate the 
issue of current data location. 

Lines (5) thm (18) in Fig. 13 show the declaration part of the matrix 
multiplication example. In line (5) the operand matrixes (arrays) A and B, and the 
result matrix C are declared. In line (7) thm (10) the size adjustments are declared 
for the physical scan caches number 1 thm 3 (also see Fig. 12 a). The handle point 
preceded by the keyword ha nd 1 e indicates the particular word location within the 
cache, which defines current cache location for address generator and user. See 
example in Fig. 12 d, where the current data location is Pi xMap [x, y] . In line 
(12) thru (14) the compound operator named MAC is declared (see Fig. 12 b). In 
lines (16) thru (18) three scan patterns are declared which are named Asean, 
BCsean, andAcsean (see Fig. 12c). At declaration time scan patterns are not yet 
assigned to a physical scan cache, nor a starting point is defined. 

Lines (19) thru (26) in Fig. 14 show the statement part of the MoPL matrix 
multiplication program. The ad jus t statement in line (20) assigns a predeclared 
format or format list (here: ABC forms) to physical scan caches. This adjustment 
remains effective until another adjustment statement is encountered. The A..J:2..l2..l.J 
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~ 

SeanPattern 
CGFFT [1:9,1:16,31:0] 
InputSean ~ 7 steps 
OutputSean ~ 7 ~s 
OuterSean ~ 3 steps 

moveto CGFFT[l,l], [3,1], [3,9]; 
OuterSean ( ~ 

[0,2]; 
[0,1]; 
[2,0] ; 

(27) 
(29) 
(29) 
(30) 
(31) 
(32) 
(33) 
(34) 

InputSeanPutputSeanputputSean; (35) 

i2.i.n. ) ( 3 6 ) 
(37) 

Fig. 15: MoPL program of constant geometry FFT scan from Fig. 10. 

statement in line (21) activates the predeclared compound operator named MAC 
and keeps it effective until another apply statement is activated. The moyeto 
statement in line (22) is the kind of data gata, which makes the caches no. 1 thru 
3 jump into a the particular locations indicated within this statement (also see first 
paragraph of this section). 

Line (24) shows calls to predeclared scan patterns named ACsean etc. (compare 
line (16) - (18». These calls actjvate scanning actions starting from the current 
data locations. Note, that a call to a scan patterns is a call to a loop. The expression 
ACsean (Asean) in line (24) indicates a call to a nested scan pattern, where the 
scan patternAsean is called by the scan patternAcsean. This means to call a loop 
by a loop, i. e. to call nested loops. The.!.21::.k. / i2.i.n. brackets (23) (25) around 
these three scan calls show, that the three scan actions run in parallel 
synchronously. Due to MoPL semantics the sequence of scan calls within the fork 
list refers to the order of physical caches no. 1,2, and 3. 

Fig. 16 illustrates the hierarchy of nested scan patterns of our example algorithm 
(rows 1 thm 3: outer loop, rows 4 - 6: inner loop) and shows the snapshots (rows 
7 thm 9) of the sequence of triple cache locations created by these nested scan 
patterns. Whenever by SPl(SP2) a scan pattern SP} calls a scan pattern SP2 this 
means, that SP1 determines nothing else than the sequence of start locations of 
SP2. The list of scan names within the fork/join clause refers to the (by lines (7) 
thm (1 O»predeclarednumberingschemeofphysicalcaches:Acsean (Asean) is 
applied to scan cache no. 1, Asean (aCsean) to scan cache no. 2, etc. 

6.2.2. Constant geometry FFT example 
Next MoPL text sample shows in lines (34) thru (36) the nested scans of the FFf 
algorithm example in Fig. tOe (scan pattern decIarations in line (28) thm (30). 
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ACscan 

Fig. 16: lllustration of scan pattern execution for the 3 by 3 matrix multiplication example: the 
hierarchy of nested scan patterns (row 1 - 3: outer loop, row 4 - 6: inner loop, row 7 - 9: snap
shot sequence of scan cache locations within matrixes). 

6.2.3. JPEG zigzag scan example 

The MoPL text from Fig. 18 illustrates programming the JPEG zigzag scan 
pattern (Fig. 17) named JPEGz igzagScan for scanning the array PixMap 

declared in line (38). This example uses a single I-by-l scan cache (adjusted as a 
single word buffer), which illustrates, that the performance benefit by the address 
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generator can be obtained also for accessing long sequences of single memory 
locations. Lines (39) thru (42) declare four scan patterns (also see Fig. 17), where 
the statements have the form: 

<name_oCscan_pattern> <maximum_Iength_oCloop> STEPs <step_vector>. 

The step vector specifies the next data location relati ve to the current data location 
(before executing a step of the scan sequence). By an escape a scan may also be 
terminated before <maximum_Iength_oCloop> is reached. E. g. see the lill.t.ll 
clause in line (48) indicating an escape on reaching a leftmost word within the 
PixMap array (see Fig. 17: the first execution of SouthWest Scan at top left 
comer of the array reaches only a loop length of 1). The condition@ [~1, ] says: 
escape if within current array a data location with an x subscript ~ 1 is reached. 
The empty position behind the comma says: ignore the y subscript). 

Hardware-supported Escapes. To avoid overhead for efficiency the lill.t.ll 
clauses are directly supported by MoM hardware features of escape execution 
[13] (also see Fig. 8). To support the ~ @ clauses by off-limits escape the 
address generator provides for each dimension (x, y) two comparators, an upper 
limit register and a lower limit register 

The above program covers the following strategy. The first l'lh.i..lJl.loop at lines 
(46) thru (51) iterates the sequence of the 4 scan calls EastScan thru 
NorthEastScan fortheuppedefttriangle oftheJPEGscan,from PixMap [1,1] 

to PixMap [8,1] (see Fig. 17). Thesecondl'lhilJtloop at lines (56) - (61) covers 
the lower right triangle from PixMap[8,1] to PixMap[8,8]. The 
SouthWestScan between both ~ loops at line (67) from PixMap [8,1] 

to Pi xMap [ 1 , 8] connects both triangular scans to obtain the total JPEG pattern. 

This section has introduced the essentials of the language MoPL-3, a C extension, 
by means of three algorithm implementation examples. The main objective of this 
section has been the illustration of the language elements for data sequencing 
programs and the illustration of its comprehensibility and the ease of its use. 

7. APPLICATION AREAS FOR XPUTERS 
Xputers like the MoM-3 and MoM-4 architectures are as universal as computers. 
A general competition between xputers and computers in all possible application 
areas would be unrealistic. This section briefly discusses suitable application 
areas for xputers from different points of view: for which algorithms and problem 
areas most benefits are to be expected - from which application environments 
least technology transfer problems will arise - in which application scenarios 
most cost/performance benefits can be expected. 
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South WestScan 

a) 

b) 

Fig. 17: JPEG zigzag scan pattern scanning an array PixMap [I :8,1 :8] (a) and its suhpatterns: 
h) upper left triangle UpLzigzagScan, d) lower right LoRzigzagScan, c) full SouthWcstScan. 

7.1. Application Environments 

Xputers are not competitive to computers in general, since cross compilers. and 
application software environments are not available commercially. 
Competitiveness, however, is be expected for particular niches of application 
markets, such as image processing, digital signal processing, computer graphics, 
multi media applications, scientific computing. and others. where higher 
performance is needed at low hardware cost. 
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Array 
ScanPattern 

PixMap [1:8,1:8,15:0] 
EastScan ~ 1 ~ 
SouthS can ~ 1 ~ 
SouthwestScan ~ 7 ~ 
NorthEastScan ~ 7 ~ 

UpLzigzagScan 
~ 

[ 1, 0]; 
[ 0, 1]; 
[-1, 1]; 

[ 1,-1]; 

(38) 
(39) 
(40) 
(41) 
(42) 
(43) 
(44 ) 
(45) 

~ (@[<8,]) (46) 
Eastscan; (47) 
SouthWest Scan ~ @[51,];(48) 
SouthScan; (49) 
NorthEastScan ~ @[,51]; (50) 

~ 

~) 

~ UpLzigzagScan ; 

LoRzigzagScan 
~ 
~ (! @[8,8]) 

(51) 
(52) 
(53) 
(54) 
(55) 
(56) 

~ EastScan; (57) 
NorthEastScan .Y.n..t..il @ [8, ]; (58) 
Eastscan; (59) 
SouthWestScan .u.n..t...i..l. @ [,8]; (60) 

(61) 
LoRzigzagScan (62) 

(63) 
(64) JPEGzigzagScan 

~ 
UpLzigzagScan 
SouthWestScan; 
LoRzigzagScan 

~ JPEGzigzagScan ; 

(65) 
(66) 
(67) 
(68) 
(69) 

endScanPattern ; (* end of declaration part *) (70) 

~ (* statement part*) 
moveto PixMap [1,1]; 
JPEGzigzagScan ; 

end 

Fig. 18: MoPL program of the JPEG scan pattern shown in Fig. 17 

(71) 
(72 ) 
(73) 
(74) 
(75) 
(76 ) 

Xputer use as co-processor. From a technology transfer point 0 view, and, for 
utilization of existing utilities, interfaces and application software an good 
symbiosis would be using the xputer as a universal accelerator co-processor, 



www.manaraa.com

391 

hosted by a von Neumann computer, e. g. as an extension board within a 
workstation. Only those critical algorithms, which exceed the power of the host, 
are candidates for running on the co-processor, mostly only a few lines of source 
code. 

Rapid turn-around ASIC synthesis. Because the rALU and the use of field
programmable logic the xputer has close relations to ASIC design methods. 
That's why with xputer parts held in cell libraries a new approach to ASIC design 
could be created. Debugging would be by orders of magnitude faster than in 
traditional ASIC design, since execution is used instead of simulation. By 
retargeting this programmable version could be converted into a hardwired gate 
array version for fabrication. For a few more details see paragraph on fast turn
around ASIC design in section 2. 

New directions in supercomputing. Because of high acceleration factors in 
algorithms, which are subjects of supercomputing effort", xputers, their 
compilers, and their applications are a source of ideas for new directions in 
supercomputing research - also in compilation techniques because of the 
paradigm's close relations to data dependency analysis. The xputer execution 
mechanism supported by scan caches and their address generators is a 
generalization of vectorization. With xputers the storage schemes for interleaved 
access memories are derived more easily and can be used for a wider variety of 
algorithms than with traditional supercomputers. (also see section 2.). 

8. CONCLUSIONS 

The paper has briefly summarized the new xputer machine paradigm, has 
demonstrated its basic execution mechanisms, and, has shown its very high 
efficiency and the reasons for it. The paper has introduced a new high level xputer 
programming language MoPL-3 being an extension of the language C and has 
illustrated its comprehensibility and the ease of its use in data-procedural 
programming for xputers. An earlier version of the language (MoPL-2) has been 
implemented at Kaiserslautern on VAX station under ULTRIX. For systolizable 
algorithms a program generator has been implemented as a front end, which 
generates MoPL programs by using modified versions of projection techniques 
known from systolic synthesis. It is an essential new aspect of this new 
computational methodology, that it is the consequence of the impact of field
programmable logic and features from DSP and image processing on basic 
computational paradigms. We have illustrated, that xputers, their languages and 
compilers open up several promising new directions in research and development 
- academic and industrial. 
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